CMR: -5x^2-6x-12<0 với mọi x
CMR: \(\forall x\in R\)có: \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
5x(x+2)-6x-12=0
\(\Leftrightarrow5x\left(x+2\right)-6\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(5x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{6}{5}\end{matrix}\right.\)
Tìm GTLN
a)3-x^2+5x. b)12-6x^2-6x
a) \(3-x^2+5x=-\left(x^2-5x-3\right)\)
\(=-\left(x^2-2x.\frac{5}{2}+\frac{10}{4}-\frac{22}{4}\right)\)
\(=-\left(x-\frac{5}{2}\right)^2+\frac{22}{4}\)
\(=-\left(x-\frac{5}{2}\right)^2+\frac{11}{2}\)
Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\)\(\Leftrightarrow-\left(x-\frac{5}{2}\right)^2\le0\)
\(\Leftrightarrow-\left(x-\frac{5}{2}\right)^2+\frac{11}{2}\le\frac{11}{2}\)
\(\Leftrightarrow3-x^2+5x\le\frac{11}{2}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{5}{2}=0\)
\(\Leftrightarrow x=\frac{5}{2}\)(T/m)
Vậy GTLN của 3 - x2 + 5x là \(\frac{11}{2}\)khi x = \(\frac{5}{2}\).
b) \(12-6x^2-6x=-6\left(x^2+x-2\right)\)
\(=-6\left(x^2+2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)\)
\(=-6\left(x+\frac{1}{2}\right)^2+\frac{27}{2}\)
Mà: \(\left(x+\frac{1}{2}\right)^2\ge0\)\(\Leftrightarrow-6\left(x+\frac{1}{2}\right)^2\le0\)
\(\Leftrightarrow-6\left(x+\frac{1}{2}\right)^2+\frac{27}{2}\le\frac{27}{2}\)\(\Leftrightarrow12-6x^2-6x\le\frac{27}{2}\)
Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)\(\Leftrightarrow x=-\frac{1}{2}\)(T/m)
Vậy GTLN của 12 - 6x2 - 6x là \(\frac{27}{2}\)khi x = \(-\frac{1}{2}\).
f)(2.x-8).(4.x+16)=0
g)5x.(6x-12)=0
h)7.(9-x)(12-6x)=0
f) (2x - 8)(4x + 16) = 0
<=> 2x - 8 = 0 hoặc 4x + 16 = 0
<=> 2x = 0 + 8 hoặc 4x = 0 - 16
<=> 2x = 8 hoặc 4x = -16
<=> x = 4 hoặc x = -4
g) 5x(6x - 12) = 0
<=> 5x = 0 hoặc 6x - 12 = 0
<=> x = 0 hoặc 6x = 0 + 12
<=> x = 0 hoặc 6x = 12
<=> x = 0 hoặc x = 2
h) 7(9 - x)(12 - 6x) = 0
<=> 9 - x = 0 hoặc 12 - 6x = 0
<=> -x = 0 - 9 hoặc -6x = 0 - 12
<=> -x = -9 hoặc -6x = -12
<=> x = 9 hoặc x = 2
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
bài 2: cho đa thức
A(x)=5/6x mũ3 - 12/7x mũ2+5x+5/7x mux2 +1/6x mux3 - 3x+9
Tìm GTNN
E=3x^2-6x+15
F= 5x^2+6x-12
G=4x^2-4x+25
H=9x^2+6x^2+4
+) ta có : \(E=3x^2-6x+15=3\left(x^2-2x+1\right)+12\)
\(=3\left(x-1\right)^2+12\ge12\) \(\Rightarrow E_{min}=12\) khi \(x=1\)
+) ta có : \(F=5x^2+6x-12=5\left(x^2+\dfrac{6}{5}x+\dfrac{9}{25}\right)-\dfrac{69}{5}\)
\(=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{69}{5}\ge\dfrac{-69}{5}\) \(\Rightarrow F_{min}=-\dfrac{69}{5}\) khi \(x=\dfrac{-3}{5}\)
+) ta có : \(G=4x^2-4x+25=4\left(x^2-x+\dfrac{1}{4}\right)+24\)
\(=4\left(x-\dfrac{1}{2}\right)^2+24\ge24\) \(\Rightarrow G_{min}=24\) khi \(x=\dfrac{1}{2}\)
+) ta có : \(H=9x^2+6x^2+4=15x^2+4\ge4\)
\(\Rightarrow H_{min}=4\) khi \(x=0\)
Tìm GTNN
E=3x^2-6x+15
F= 5x^2+6x-12
G=4x^2-4x+25
H=9x^2+6x^2+4
\(\sqrt{5x^4}+10x+30+\sqrt{3x^2}+6x+12-8=0\)
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`