\(\frac{1}{7}.\left(\frac{-23}{10}\right)+\left(\frac{77}{10}\right)\)
\(\frac{17}{10}.\left(\frac{-23}{10}\right)+\left(\frac{77}{10}\right)\)
\(\frac{17}{10}.\left(\frac{-23}{10}\right)+\frac{77}{10}\)
\(=\frac{-391}{100}+\frac{77}{10}\)
\(=\frac{379}{100}\)
Tính giá trị biểu thức
a, \(A=2010^{2010}.\left(7^{10}:7^8-3.16-2^{2010}:2^{2010}\right)\)
b, \(B=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
a,
A = 20102010.[710:78-3.16-22010:22010]
= 20102010.[72-48-1]
= 20102010.0 = 0
b,
B = 1
\(A=2010^{2010}.\left[7^{10}:7^8-3.16-2^{2010}:2^{2010}\right]\)
\(A=2010^{2010}.\left[7^2-48-1\right]\)
\(A=2010^{2010}.0\)
\(Vay\)\(A=0\)
A= 20102010(72 - 48 - 1)
A=20102010(49-48-1)
A=20102010.0
A=0
Tính giá trị biểu thức
\(1.A=\frac{1}{5}+\frac{3}{17}-\frac{4}{3}+\left(\frac{4}{5}-\frac{3}{17}+\frac{1}{3}\right)-\frac{1}{7}+\left[\frac{-14}{30}\right]\)
\(2.B=\left(\frac{5}{8}-\frac{4}{12}+\frac{3}{2}\right)-\left(\frac{5}{8}+\frac{9}{13}\right)-\left[\frac{-3}{2}\right]+\frac{7}{-15}\)
\(3.C=\frac{5}{18}+\frac{8}{19}-\frac{7}{21}+\left(\frac{-10}{36}+\frac{11}{19}+\frac{1}{3}\right)-\frac{5}{8}\)
\(4.D=\frac{1}{9}-\left[\frac{-5}{23}\right]-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{14}-\frac{7}{30}\)
\(5.E=\frac{1}{13}+\left(\frac{-5}{18}-\frac{1}{13}+\frac{12}{17}\right)+\left(\frac{12}{17}+\frac{5}{18}+\frac{7}{5}\right)\)
\(6.F=\frac{15}{14}-\left(\frac{17}{23}-\frac{80}{87}+\frac{5}{4}\right)+\left(\frac{12}{17}-\frac{15}{14}+\frac{1}{4}\right)\)
\(7.G=\frac{1}{25}-\frac{4}{27}+\left(\frac{-23}{27}+\frac{-1}{25}-\frac{5}{43}\right)+\frac{5}{43}-\frac{4}{7}\)
\(8.H=\frac{4}{15}-\frac{23}{28}-\left(\frac{-23}{28}+\frac{-11}{15}-\frac{29}{27}\right)-\frac{2}{27}\)
\(9.K=\frac{1}{16}-\frac{5}{21}+\left(\frac{-1}{16}+\frac{-3}{5}-\frac{-5}{21}\right)+\frac{-2}{5}+\frac{3}{4}\)
\(10.L=\frac{7}{12}+\frac{15}{14}-\left(\frac{14}{22}+\frac{-1}{14}+\frac{5}{21}\right)-\frac{-5}{21}+\frac{3}{5}\)
yutyugubhujyikiu
Tính:
\(\frac{\left(\frac{4}{7\cdot31}+\frac{6}{7\cdot41}+\frac{9}{10\cdot41}+\frac{10}{10\cdot57}\right)}{\left(\frac{7}{19\cdot31}+\frac{5}{19\cdot43}+\frac{3}{23\cdot43}+\frac{11}{23\cdot57}\right)}\)
Bài 1:
\(E=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right)\div\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
Bài 2:
\(G=\frac{4,5\div\left[47,375-\left(26\frac{1}{3}-18\cdot0,75\right)\cdot2,4\div0,88\right]}{17,81\div1,37-23\frac{2}{3}\div1\frac{5}{6}}\)
Tính nhanh:
a)\(\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}};\)
b) \(\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\)
c)\(\left[ {\left( { - \frac{4}{9}} \right) + \frac{3}{5}} \right]:\frac{{13}}{{17}} + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}};\)
d) \(\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\)
a)
\(\begin{array}{l}\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}}\\ = \frac{7}{{11}}.\left( {\frac{{13}}{{23}} + \frac{{10}}{{23}}} \right)\\ = \frac{7}{{11}}.\frac{23}{23}\\ = \frac{7}{{11}}.1\\ = \frac{7}{{11}}\end{array}\)
b)
\(\begin{array}{l}\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\\ = \frac{5}{9}.\left( {\frac{{23}}{{11}} - \frac{1}{{11}} + 1} \right)\\ = \frac{5}{9}.\left( {2 + 1} \right)\\ = \frac{5}{9}.3 = \frac{5}{3}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( { - \frac{4}{9} + \frac{3}{5}} \right):\frac{{13}}{{17}}} \right] + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}}\\ = \left( { - \frac{4}{9} + \frac{3}{5}} \right).\frac{{17}}{{13}} + \left( {\frac{2}{5} - \frac{5}{9}} \right).\frac{{17}}{{13}}\\ = \frac{{17}}{{13}}.\left( { - \frac{4}{9} + \frac{3}{5} + \frac{2}{5} - \frac{5}{9}} \right)\\ = \frac{{17}}{{13}}.\left[ {\left( { - \frac{4}{9} - \frac{5}{9}} \right) + \left( {\frac{3}{5} + \frac{2}{5}} \right)} \right]\\ =\frac{{17}}{{13}}. (\frac{-9}{9}+\frac{5}{5})\\= \frac{{17}}{{13}}.\left( { - 1 + 1} \right)\\ = \frac{{17}}{{13}}.0 = 0\end{array}\)
d)
\(\begin{array}{l}\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\\ = \frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{6}{{22}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{4}{{10}}} \right)\\ = \frac{3}{{16}}:\frac{{ - 3}}{{22}} + \frac{3}{{16}}:\frac{{ - 3}}{{10}}\\ = \frac{3}{{16}}.\frac{{ - 22}}{3} + \frac{3}{{16}}.\frac{{ - 10}}{3}\\ = \frac{3}{{16}}.\left( {\frac{{ - 22}}{3} + \frac{{ - 10}}{3}} \right)\\ = \frac{3}{{16}}.\frac{{ - 32}}{3}\\ = - 2\end{array}\)
tính giá trị biểu thức
\(\left(\frac{17}{10}+7-8,7\right):\left(\frac{23}{4}-\frac{11}{2}+\frac{9}{25}\right)x\left(12,98x0,25\right)+12,5\)
\(1\frac{2}{24}x5\frac{2}{5}x2x3\frac{7}{9}x2x\frac{2}{17}\)
\(2\frac{2}{17}x1\frac{1}{24}x5\frac{2}{5}x3\frac{7}{9}x2\)
\(3x\left(\frac{1}{7}+\frac{1}{3}-\frac{3}{14}\right):\frac{11}{14}\)
\(\left(1\frac{3}{2}+2\frac{1}{5}\right)x1\frac{1}{10}+\left(1\frac{7}{10}-\frac{4}{5}\right):\frac{3}{7}\)
1) Tính:
a)\(\left(\frac{1}{3}-\frac{1}{5}\right)^2:\left(\frac{1}{5}\right)^2\)
b) \(\frac{2^3.5^2.8}{10^{10}}\)
c) \(7\frac{1}{23}+\frac{10}{27}-5\frac{1}{23}+\frac{17}{27}+2^3\)
d) \(5.\left(-\frac{5}{2}\right)^2+\frac{1}{5}.\left(-3\right)^2\)
CÁC BẠN GIÚP MIK VỚI
a) \(\left(\frac{1}{3}-\frac{1}{5}\right)^2:\left(\frac{1}{5}\right)^2=\left[\left(\frac{1}{3}-\frac{1}{5}\right):\frac{1}{5}\right]^2=\left(\frac{2}{15}:\frac{1}{5}\right)^2=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c)\(7\frac{1}{23}+\frac{10}{27}-5\frac{1}{23}+\frac{17}{27}+2^3=\left(7\frac{1}{23}-5\frac{1}{23}\right)+\left(\frac{10}{27}+\frac{17}{27}\right)+2^3=2+1+8=11\)
d)\(5.\left(-\frac{5}{2}\right)^2+\frac{1}{5}.\left(-3\right)^2=5.\frac{25}{4}+\frac{1}{5}.9=\frac{125}{4}+\frac{9}{5}=\frac{661}{20}\)
a) \(\left(\frac{1}{3}-\frac{1}{5}\right)^2:\left(\frac{1}{5}\right)^2=\left[\left(\frac{1}{3}-\frac{1}{5}\right):\frac{1}{5}\right]^2=\left[\left(\frac{5}{15}-\frac{3}{15}\right):\frac{1}{5}\right]^2=\left[\frac{2}{15}.5\right]^2=\left[\frac{2}{3}\right]^2=\frac{4}{9}\)
b) \(\frac{2^3.5^2.8}{10^{10}}=\frac{2^3.5^2.2^3}{\left(2.5\right)^{10}}=\frac{\left(2^3.2^3\right).5^2}{2^{10}.5^{10}}=\frac{2^6.5^2}{2^{10}.5^{10}}=\frac{1}{2^4.5^8}=\frac{1}{6250000}\)
c) \(7\frac{1}{23}+\frac{10}{27}-5\frac{1}{23}+\frac{17}{27}+2^3\)
\(=\left(7\frac{1}{23}-5\frac{1}{23}\right)+\left(\frac{10}{27}+\frac{17}{27}\right)+2^3\)
\(=2+1+8\)
\(=11\)
d) \(5.\left(-\frac{5}{2}\right)^2+\frac{1}{5}.\left(-3\right)^2\)
\(=5.\frac{25}{4}+\frac{1}{5}.9\)
\(=\frac{125}{4}+\frac{9}{5}\)
\(=\frac{625}{20}+\frac{36}{20}=\frac{661}{20}\)
Chuk bạn hok tốt !
Tính giá trị của biểu thức sau một cách hợp lí:
\(B = \left( {\frac{{ - 3}}{{13}}} \right) + \frac{{16}}{{23}} + \left( {\frac{{ - 10}}{{13}}} \right) + \frac{5}{{11}} + \frac{7}{{23}}\)
\(\begin{array}{l}B = \left( {\frac{{ - 3}}{{13}}} \right) + \frac{{16}}{{23}} + \left( {\frac{{ - 10}}{{13}}} \right) + \frac{5}{{11}} + \frac{7}{{23}}\\ = \left[ {\left( {\frac{{ - 3}}{{13}}} \right) + \left( {\frac{{ - 10}}{{13}}} \right)} \right] + \left[ {\frac{{16}}{{23}} + \frac{7}{{23}}} \right] + \frac{5}{{11}}\\ = - 1 + 1 + \frac{5}{{11}}\\ = \frac{5}{{11}}\end{array}\)
`B= ( (-3)/13 + (-10)/13) + (16/23 + 7/23 ) +5/11`
`B= -13/13 + 23/23 +5/11`
`B=-1+1+5/11`
`B=0+5/11`
`B=5/11`
\(B=\left(-\dfrac{3}{13}\right)+\dfrac{16}{23}+\left(-\dfrac{10}{13}\right)+\dfrac{5}{11}+\dfrac{7}{23}\)
\(B=\left[\left(-\dfrac{3}{13}\right)+\left(-\dfrac{10}{13}\right)\right]+\left(\dfrac{16}{23}+\dfrac{7}{23}\right)+\dfrac{5}{11}\)
\(B=\left(-1\right)+1+\dfrac{5}{11}\)
\(B=\dfrac{5}{11}\)