Nếu \(|q|< 1\)thì lim \(q^n=0\)
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Chứng minh rằng nếu \(\lim\limits v_n=0\) và \(\left|u_n\right|\le v_n\) với mọi n thì \(\lim\limits u_n=0\) ?
Chọn khẳng định đúng trong các khẳng định sau:
Câu 1:
A.Nếu lim|\(u_n\)|=+oo, thì lim\(u_n\)= +oo B. Nếu lim|\(u_n\)|=+oo, thì lim\(u_n\)=-oo
C.Nếu lim\(u_n\)=0, thì lim|\(u_n\)|=0 D.C.Nếu lim\(u_n\)=-a, thì lim|\(u_n\)|=a
Câu 2:
(I). f(x)=\(\frac{\sqrt{x+1}}{x-1}\) liên tục với mọi x≠1
(II). f(x)=sinx liên tục trên R
(III). f(x)=\(\frac{\left|x\right|}{x}\)liên tục tại x=1
A. Chỉ (I) đúng B. Chỉ (I) va (II) C, Chỉ (I) và (III) D. Chỉ (II) va (III)
Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)
Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục
(II) đúng do tính chất hàm sin
(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)
Vậy đáp án D đúng
Tìm \(\lim\limits_{x->-\infty}\)\(\frac{\left|x\right|\sqrt{4x^2+3}}{2x-1}\)
lim \(\sqrt{n}\)(\(\sqrt{n+4}\)-\(\sqrt{n+3}\))
lim (n-2-\(\sqrt{3n^2+n-1}\))
\(\lim\limits_{x->0}\)\(\frac{\sqrt[3]{x^3-2x+1}-1}{x^2+2x}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{4x^2+3}}{2x-1}=\lim\limits_{x\rightarrow-\infty}\frac{x\sqrt{4+\frac{3}{x^2}}}{2-\frac{1}{x}}=-\infty\)
\(lim\frac{\sqrt{n}}{\sqrt{n+4}+\sqrt{n+3}}=lim\frac{1}{\sqrt{1+\frac{4}{n}}+\sqrt{1+\frac{3}{n}}}=\frac{1}{2}\)
\(lim\left(\frac{\left(n-2\right)^2-\left(3n^2+n-1\right)}{n-2+\sqrt{3n^2+n-1}}\right)=lim\frac{-2n^2-5n+5}{n-2+\sqrt{3n^2+n-1}}=lim\frac{-2n+5+\frac{5}{n}}{1-\frac{2}{n}+\sqrt{3+\frac{1}{n}-\frac{1}{n^2}}}=-\infty\)
\(\lim\limits_{x\rightarrow0}\frac{\left(x^3-2x+1\right)^{\frac{1}{3}}-1}{x^2+2x}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(3x-2\right)\left(x^3-2x+1\right)^{-\frac{2}{3}}}{2x+2}=-\frac{1}{3}\)
Câu 1: lim \(\frac{n+sin2n}{n+5}\)
Câu 2: lim \(\frac{3sinn+4cosn}{n+1}\)
Câu 3: Cho 0<\(\left|a\right|,\left|b\right|\)<1. Khi đó lim \(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\) bằng bao nhiêu ?
Câu 1.
\(y = \dfrac{{n + \sin 2n}}{{n + 5}} = \dfrac{{\dfrac{n}{n} + \dfrac{{\sin 2n}}{n}}}{{\dfrac{n}{n} + \dfrac{5}{n}}} = \dfrac{{1 + \dfrac{{2.\sin 2n}}{{2n}}}}{{1 + \dfrac{5}{n}}}\\ \Rightarrow \lim y = \dfrac{{1 + 0}}{{1 + 0}} = 1 \)
Câu 2.
\(\lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}}\)
Vì \( - 1 \le \sin n \le 1; - 1 \le \cos n \le 1 \Rightarrow \) khi \(x \to \infty \) thì \(3\sin n + 4{\mathop{\rm cosn}\nolimits} = const \)
\(\Rightarrow T = \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} = 0 \)
Chú thích: $const$ là kí hiệu hằng số, giống như dạng giới hạn L/vô cùng.
Câu 3.
\(\lim \dfrac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \lim \dfrac{{\left( {1 + a + {a^2} + ... + {a^n}} \right)\left( {1 - a} \right)\left( {1 - b} \right)}}{{\left( {1 + b + {b^2} + ... + {b^n}} \right)\left( {1 - b} \right)\left( {1 - a} \right)}} = \lim \dfrac{{\left( {1 - {a^{n + 1}}} \right)\left( {1 - b} \right)}}{{\left( {1 - {b^{n + 1}}} \right)\left( {1 - a} \right)}} = \dfrac{{1 - b}}{{1 - a}}\)
Cho hai dãy số ( u n ) và ( v n ) . Chứng minh rằng nếu lim v n = 0 v à | u n | ≥ v n với mọi n thì l i m u n = 0
l i m v n = 0 ⇒ | v n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)
Vì | u n | ≤ v n v à v n ≤ | v n | với mọi n, nên | u n | ≤ | v n | với mọi n. (2)
Từ (1) và (2) suy ra | u n | cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là l i m u n = 0
Tại sao làm như vậy là sai nhỉ : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{\frac{1}{n}+\frac{2}{n}+...+\frac{1}{n^2}}{1+\frac{1}{n^2}}=\frac{0}{1}=0\)
phải làm theo vầy mới đúng : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{n\left(n+1\right)}{2\left(n^2+1\right)}=\lim\limits_{ }\frac{1+\frac{1}{n}}{2+\frac{1}{n}}=\frac{1}{2}\)
Mình mới học nên ko hiểu lắm, có ai giúp vớiiiiiiiiiii
\(lim\frac{3n^2+2n+5}{7n^2+n-8}\)
\(lim\left(-3n^3+5n-2\right)\)
\(lim\frac{3^n+4.7^n}{3.7^n-2}\)
\(lim\frac{x^2+2x-1}{2x^3+1}\)
\(lim\frac{1-3^n}{2^n+4.3^n}\)
\(=lim\frac{3+\frac{2}{n}+\frac{5}{n^2}}{7+\frac{1}{n}-\frac{8}{n^2}}=\frac{3}{7}\)
\(=lim-3n^3\left(1-\frac{5}{3n^2}+\frac{2}{3n^3}\right)=-\infty\)
\(=lim\frac{\left(\frac{3}{7}\right)^n+4}{3-2.\left(\frac{1}{7}\right)^n}=\frac{4}{3}\)
Câu này đề thiếu, giới hạn của x nên nó là giới hạn của hàm chứ ko phải giới hạn của dãy, mà giới hạn của hàm thì cần chỉ rõ x tiến tới bao nhiêu mới tính được
\(=lim\frac{\left(\frac{1}{3}\right)^n-1}{\left(\frac{2}{3}\right)^n+4}=-\frac{1}{4}\)
Giúp mình 2 câu này với.
1. Giả sử \(\left(u_n\right)_{n\ge1}\) là dãy số dương. Nếu \(\lim\limits_{ }u_n=a\in\left[0;+\infty\right]\) thì \(\lim\limits_{ }\sqrt[n]{u_1u_2...u_n}=a\)
2. Giả sử \(\left(u_n\right)_{n\ge1}\) là dãy số dương. Nếu \(\lim\limits_{ }\dfrac{u_{n+1}}{u_n}=a\in\left[0;+\infty\right]\) thì \(\lim\limits_{ }\sqrt[n]{u_n}=a\)
Mình quên không nói là đề bài yêu cầu chứng minh 2 bổ đề trên.
\(lim\left(\sqrt[3]{n-n^3}+\sqrt{n^2+3n}\right)\)
\(lim\left(\sqrt{n-2\sqrt{n}}-\sqrt{n+4}\right)\)
\(lim\left(\sqrt[3]{3n^2+n^3}-n\right)\)
\(lim\left(\sqrt[3]{n^3+6n}-\sqrt{n^2-4n}\right)\)
\(lim\frac{-3^{n+1}+4^{n+1}}{5.3^n+3.2^{2n-1}}\)
\(lim\left(\frac{3^{2n}-5^{n+1}+7^{n+1}}{3^{n+2}+5^n+2^{3n+2}}\right)\)
\(lim\left(\frac{6^{n+1}+3^{2n+5}}{3^{2n+3}-2^{2n-1}}\right)\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)