#)Giải :
Ta có : \(\frac{1}{q^n}=p^n=\left(1+h\right)^n\ge1+nh>nh\)với mọi n
\(\Rightarrow0< q^n< \frac{1}{h}.\frac{1}{n}\)với mọi n
Vì \(lim\frac{1}{n}=0\Rightarrow limq^n=0\left(đpcm\right)\)
Cho số thực x>−1 , khi đó (1+x)n≥1+nx,∀n∈N∗
Vì |q|<1 nên 1/|q|>1, do đó có số thực p>0 để 1/|q|=1+p
⇔ |q|=1 / 1+p
|q|n=1/(1+p)n ≤ 1 / 1+np < 1np∀n∈N∗
Do lim1/np = 0 nên lim|q|n = 0 kéo theo limqn = 0