cho \(x+y=3\) và \(xy=2\) . tính
\(D=x^3+y^3+7x^2+7y^2\)
phân tích đa thức thành nhân tử
a,x^2-xy-y^2 b,x^3+x^2+4 c,x^3-x^2-4 d,x^2-7x-y^2-7y
b: =x^3+2x^2-x^2+4
=x^2(x+2)-(x+2)(x-2)
=(x+2)(x^2-x+2)
c: =x^3-2x^2+x^2-4
=x^2(x-2)+(x-2)(x+2)
=(x-2)(x^2+x+2)
d: =(x-y)(x+y)-7(x+y)
=(x+y)(x-y-7)
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
Tính giá trị của biểu thức : \(C=x^3+y^3-x^2y-xy^2+7x^2-7y^2+2016\)biết \(x-y+7=0\)
Ta có : \(C=x^3+y^3-x^2y-xy^2+7x^2-7y^2+2016\)
\(=\left(x^3-x^2y+7x^2\right)-\left(xy^2-y^3+7y^3\right)+2016\)
\(=x^2\left(x-y+7\right)-y^2\left(x-y+7\right)+2016\)
\(=x^2\cdot0-y^2\cdot0+2016=2016\)
( Do \(x-y+7=0\))
Vậy : \(C=2016\)
\(C=\left(x^3-x^2y+7x^2\right)-\left(xy^2-y^3+7y^2\right)+2016=x^2\left(x-y+7\right)-y^2\left(x-y+7\right)+2016=0+0+2016=2016\)
Vậy C=2016
m.n ơi!
giúp mik 10 phần này nha!
1).x/3=y/5 và x+y=-32
2).x/y=9/11 và x+y=60
3).x/y=1,2/2,5 và y-x=16
4).x/2=y/5 và x+y=-21
5.)7x=3y và x-y=16
6.)5x=7y và y-x=18
7)7x=4y và y-x=24
8)x/3=y/8 và x+y=-22
9)x/3=y/4 và xy=192
10)4x=5x và xy=80
Áp dụng tính chất dãy tỉ số = nhau ý
P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8) và 9) tương tự 1)
5) Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).
6) và 7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)
10) Sửa đề : \(4x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)và \(xy=80\)
Đặt \(\hept{\begin{cases}\frac{x}{5}=k\\\frac{y}{4}=k\end{cases}\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}}\)
Ta có : \(xy=5k.4k=20k^2=80\)
\(\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tự làm nốt ...
6) \(5x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{5}\)và \(y-x=18\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{18}{-2}=-9\)
Với \(\frac{x}{7}=-9\Leftrightarrow x=-63\)
Với \(\frac{y}{5}=-9\Leftrightarrow y=-45\)
Ok ! làm vậy đủ các cách làm rồi đấy. Làm nốt nhá ! Cố lến bn.
1tim các số nguyên
a,x-2*y+3=7
b,x.(y-5)=-9
c,x-7.x-3=5
d,xy+3x-7y=21
e,xy+7x-2y=11
thử thach đi nao ae !
a)x^2(x-3)-4x+12 b)2a(x+y)-x+y c)6x^2-12x-7x+14 d)xy-y^2-3x+3y f)x^2y+xy^2-4x-4y g)10ax-5ay-7x+14 j)a^3-a^2+9a-9(tính nhân tử chung)
a: \(x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b: \(2a\left(x+y\right)+x+y=\left(x+y\right)\left(2a+1\right)\)
c: \(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
\(\left\{{}\begin{matrix}x^3=y^2+7x^2-mx\\y^3=x^2+7y^2-my\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x-y=0\\x^2+y^2+xy-6\left(x-y\right)+m=0\end{matrix}\right.\)
tìm m để pt có đúng 1 nghiệm. Từ x-y=0 Em tìm dc 1 nghiệm và m<16 rồi còn pt dưới thì ch bt làm sao ạ mn giúp em với em cảm ơn nhiêuuuuuu
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)
b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)
c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)
d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
B=x2 + xy - 7x - 7y ; với x=\(7\frac{3}{5}\)và y=\(2\frac{2}{5}\)