Ta có: \(xy=2\Rightarrow2xy=4\)
\(x+y=3\Rightarrow\left(x+y\right)^2=9\Rightarrow x^2+2xy+y^2=9\)
\(\Rightarrow x^2+y^2=5\text{ vì }2xy=4\)
\(x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)=\left(x+y\right).\left(x^2-xy+y^2\right)\)
\(\Rightarrow x^3+y^3+7x^2+7y^2=\left(x+y\right).\left(x^2-xy+y^2\right)+7.\left(x^2+y^2\right)\)
\(=3.\left(5-2\right)+7.5=9+35=44\)