\(\frac{1.4}{4.6}+\frac{2.5}{6.8}+\frac{3.6}{8.10}+.........+\frac{48.51}{98.100}\)
Tính Q:
Q= 1.4/4.6 + 2.5/6.8 + 3.6/8.10 + ..... + 48.51/98.100
Q=1/4(1.4/2.3+2.5/3.4+3.6/4.5+...+48.51/49.50)
=1/4(2.3−2/2.3+3.4−2/3.4+4.5−2/4.5+...+49.50−2/49.50)
=1/4(1− 2/2.3+ 1− 2/3.4+ 1− 2/4.5+...+1− 2/49.50)
=1/4[48−2(1/2.3+1/3.4+...+1/49.50)]
=1/4[48−2(1/2−1/3+1/3−1/4+...+1/49−150)]
=14[48−2(1/2−1/50)]=294/25
Tính Q:
Q= 1.4/4.6 + 2.5/6.8 + 3.6/8.10 + ..... + 48.51/98.100
\(Q=\frac{1}{4}\left(\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+...+\frac{48.51}{49.50}\right)\)
\(=\frac{1}{4}\left(\frac{2.3-2}{2.3}+\frac{3.4-2}{3.4}+\frac{4.5-2}{4.5}+...+\frac{49.50-2}{49.50}\right)\)
\(=\frac{1}{4}\left(1-\frac{2}{2.3}+1-\frac{2}{3.4}+1-\frac{2}{4.5}+...+1-\frac{2}{49.50}\right)\)
\(=\frac{1}{4}\left[48-2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\right]\)
\(=\frac{1}{4}\left[48-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\right]\)
\(=\frac{1}{4}\left[48-2\left(\frac{1}{2}-\frac{1}{50}\right)\right]=\frac{294}{25}\)
Tính
A = 1.4 + 2.5 + 3.6 + ...+ 99.102
B = 2.4 + 4.6 + 6.8 + ....+ 98.100 + 100.102
\(A = 1.4 + 2.5 + 3.6 + ...+ 99.102\)
\(A=1.2+1.2+2.3+2.2+3.4+3.2+...+99.100+99.2\)
\(A=(1.2+2.3+3.4+...+99.100)+2.(1+2+3+...+99)\)
\(A=333300+9900\)
\(A=343200\)
\(B = 2.4 + 4.6 + 6.8 + ....+ 98.100 + 100.102\)
\(B=(1.2)(2.2)+(2.2)(3.2)+...+(50.2)(51.2) \)
\(B=4(1.2+2.3+...+50.51) \)
\(M= 1.2+2.3+...+50.51 \)
\(3M=1.2.3+2.3.(4-1)+...+50.51.(52-49) \)
\(=1.2.3+2.3.4-1.2.3+...+50.51.52-49.50.51 \)
\(= 50.51.52\)
\(=132600 \)
\(\Rightarrow\)\(M=44200 \)
\(\Rightarrow\) \(B=4M=176800\)
B=\(\frac{2^2}{1.3}\)+\(\frac{3^2}{2.4}+\frac{4^2}{3.5}+\frac{5^2}{4.6}+........+\frac{99^2}{98.100}\).TÌM PHẦN NGUYÊN CỦA B
\(C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{2499}{2500}\). CM:C>48
\(N=\frac{1.4}{2.3}+\frac{2.5}{3.4}+\frac{3.6}{4.5}+....+\frac{98.101}{99.100}\). CM : 97<N<98
tính nhanh
\(Q=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{98.100}\)
\(\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
= \(\frac{5}{2}-\frac{5}{4}+\frac{5}{4}-\frac{5}{6}+...+\frac{5}{98}-\frac{5}{100}\)
= \(\frac{5}{2}-\frac{5}{100}\)
= \(\frac{49}{50}\)
\(Q=\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
\(=5\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.2.\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5}{2}.\frac{49}{100}=\frac{49}{40}\)
\(\Rightarrow Q=\frac{49}{40}\)
Tính nhanh:
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...........+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
cho mình nha!
Tính tổng \(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+\frac{5}{8\cdot10}+...+\frac{5}{298\cdot300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\cdot\frac{37}{150}\)
\(=\frac{37}{60}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
= \(\frac{5}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{298.300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\frac{37}{150}\)
= \(\frac{37}{60}\)
Ta đặt biểu thức trên là A
\(\frac{1}{2}\)A=\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...........+\(\frac{2}{298.300}\)
\(\frac{1}{2}\)A=1/4-1/6+1/6-1/8+..............+1/298-1/300
\(\frac{1}{2}\)A=1/4-1/300
1/2A=74/300
A=74/300:1/2
A=37/75
\(c=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{98.100}\)
=1/2-1/4+1/4-1/6+....+1/98-1/100
=1/2-1/100
=49/100
=1/2-1/4+1/4-1/6+ ... +1/98-1/100
=1/2-1/100
=49/100
C= \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
= \(\frac{1}{2}.\left(\frac{50}{100}-\frac{1}{100}\right)\)
= \(\frac{1}{2}.\frac{49}{100}\)
= \(\frac{49}{200}\)
tính :
S= \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\)
\(2S=\frac{1}{2}-\frac{1}{10}\)
\(2S=\frac{2}{5}\)
\(S=\frac{2}{5}:2\)
\(S=\frac{1}{5}\)
S = \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
=> 2S = \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
=> 2S = \(\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> S = \(\frac{2}{5}:2=\frac{2}{5}x\frac{1}{2}=\frac{1}{5}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(\Rightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
\(\Rightarrow2S=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow S=\frac{2}{5}:2=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)