50*10*2*4-+200=
tính tổng
C=2+4+6+8+...+50
D=1+2+3+4+...+200
E=1+4+7+10+...+100
GIÚP MÌNH VỚI Ạ
\(C=2+4+6+8+...+50\)
Số các số hạng của \(C\) là:
\(\left(50-2\right):2+1=25\left(số\right)\)
Tổng \(C\) bằng:
\(\left(50+2\right)\cdot25:2=650\)
\(---\)
\(D=1+2+3+4+...+200\)
Số các số hạng của \(D\) là:
\(\left(200-1\right):1+1=200\left(số\right)\)
Tổng \(D\) bằng:
\(\left(200+1\right)\cdot200:2=20100\)
\(---\)
\(E=1+4+7+10+...+100\)
Số các số hạng của \(E\) là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng \(E\) bằng:
\(\left(100+1\right)\cdot34:2=1717\)
\(Toru\)
Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2
Số số hạng của tổng C là:
(50 - 2) : 2 + 1 = 25 (số hạng)
Tổng C có giá trị là:
(2 + 50) x 25 : 2 = 650
-----------------------------------------
Số số hạng của tổng D là: 200
Tổng D có giá trị là:
(1 + 200) x 200 : 2 = 20100
----------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3
Số số hạng của tổng E là:
(100 - 1) : 3 + 1 = 34 (số hạng)
Tổng E có giá trị là:
(1 + 100) x 34 : 2 = 1717
Đáp số: C = 650
D = 20100
E = 1717
so sánh
3^200 và 4^100
5^200 và 4^300
6^ 50 và 7^ 25
8^40 và 10^20
16^20 và 32^10
giúp mình nhé
\(3^{200}=9^{100}>4^{100}\\ 5^{200}=25^{100}< 64^{100}=4^{300}\\ 6^{50}=36^{25}>7^{25}\\ 8^{40}=64^{20}>10^{20}\\ 16^{20}=256^{10}>32^{10}\)
tick mik nha!!
3200=9100>41005200=25100<64100=4300650=3625>725840=6420>10201620=25610>3210
a: \(3^{200}=\left(3^2\right)^{100}=9^{100}>4^{100}\)
b: \(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(4^{300}=\left(4^3\right)^{100}=64^{100}\)
mà 25<64
nên \(5^{200}< 4^{300}\)
c: \(6^{50}=\left(6^2\right)^{25}=36^{25}>7^{25}\)
1, 50+50+50+100/5=
2, 100/100+20/10+5=
3, 200/100+50/10+6=
1)50+50+50+100/5
=50+50+50+20
=100+70
=170
2)100/100+20/10+5
=1+2+5
=3+5
=8
3)200/100+50/10+6
=2+5+6
=7+6
=13
minh tr nha ban
Thu gọn biểu thức:
A = 10 + 11 + 12 + ... + 100
B = 10 + 12 + ... + 200
C = 11 + 13 + ... + 99
D = 1 + 4 + 7 + ... + 100
E = 1 x 2 + 2 x 3 + ... + 49 x 50
F = 1 x 2 x 2 + 2 x 3 x 4 + ... + 48 x 49 x 50
A = 10 + 11 + 12 + ....+ 100
Xét dãy số: 10; 11; 12; ...;100
Dãy số trên là dãy số cách đều với khoảng cách là: 11 - 10 = 1
Số số hạng của dãy số trên là: (100 - 10) : 1 + 1 = 91
Tổng A là: A = (100 + 10) x 91 : 2 = 50005
B = 10 + 12+ ...+ 200
Xét dãy số: 10; 12; ...;200
Dãy số trên là dãy số cách đều với khoảng cách là:
12 - 10 = 2
Số số hạng của dãy số trên là:
(200 - 10) : 2 + 1 = 96 (số hạng)
Tổng B là:
B = (200 + 10) x 96: 2 = 10080
C = 11 + 13+ ... + 99
Xét dãy số trên là dãy số cách đều với khoảng cách là:
13 - 11 = 2
Số số hạng của dãy số trên là:
(99 - 11) : 2 + 1 = 45
Tổng C là:
(99 + 11) x 45 : 2 = 2475
100+100+200-600+400-90-64+50+4-80+20-6+3+3-50+10+200-90-90-20+123-100-20-3+50-49-1+60-30-30+741-700-40-1=???
Ai giải ra bài toán này mình tick cho
100+100+200-600+400-90-64+50+4-80+20-6+3+3-50+10+200-90-90-20+123-100-20-3+50-49-1+60-30-30+741-700-40-1=108
chắc 100% luôn mik dùng máy tính mà mik nhanh nhất phải k mik đó các abnj ko được cặp bi đâu phải tính nếu đúng thì tích mik nha
mệt quá!
1000 + 900 + 800 + 700 + 600 + 500 + 400 + 300 + 200 + 100 + 90 + 80 + 70 + 60 + 50 + 40
+ 30 + 20 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 =
47-[(45.2^4-5^2.12):14]
50-[(20-2^3):2+34]
10^2-[60:(5^6:5^4-3.5)]
50-[(50-2^3.5):2+3]
10-[(8^2-48).5+(2^3.10+8)]:28
8697-[3^7,3^5+2(13-3)]
2011+5[300-(17-7^2)]
695-[200+(11-1^2)]
129-5[29-(6-1^2)]
2010-2000:486-2(7^2-6)]
dài thế này làm đến tết chắc vẫn chưa xong
Bạn đăng từ bài thôi , nhiều quá sao làm nổi
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):10\\ \)
\(=\left(15\cdot10\sqrt{2}-3\cdot15\sqrt{2}+2\cdot5\sqrt{2}\right):10\\ =\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):10\\ =115\sqrt{2}:10=\dfrac{23\sqrt{2}}{2}\)