chứng minh: (x-5)*(x-4) nhỏ hoặc bằng 0
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
cho x,y,z>0 ; x nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng z
Chứng minh 4x2+4y2 nhỏ hơn hoặc bằng xy+yz+xz+5z2
ìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
b,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)
Mà \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy ...
c,
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)
Vậy ...
Tìm các số nguyên x thỏa mãn:a)(x-3).(x-5)<0
b)(x+2).(x+4)nhỏ hơn hoặc bằng 0. C)(2x-1).(2x-3)nhỏ hơn hoặc bằng 0
Các bạn ơi giúp mk với mk đag cần vội,ai trả lời nhanh nhất đúg nhất mk sẽ k cho
Tìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
Giúp mk với mn ơi
a.(2x-3) (3x+6) lớn hơn 0
b.(3x+4) (2x-6) nhỏ hơn 0
c.(3x+5) (2x+4) lớn hơn 4
d.(3x+4) (x-2) nhỏ hơn 0
e.(x+4) (2x-4) lớn hơn 0
f.(4x-8) (2x+5) nhỏ hơn 0
g.(2x-3) (3x+6) lớn hơn hoặc bằng 0
h.(3x-7) (x+1) nhỏ hơn hoặc bằng 0
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
Chứng minh rằng \(X^5+Y^5>\) hoặc bằng x mũ bốn y cộng x y mũ bốn x và y khác 0 x+y lớn hơn hoặc bằng 0
Bài 1: Tìm x để
a.(2x-3) (3x+6) lớn hơn 0
b.(3x+4) (2x-6) nhỏ hơn 0
c.(3x+5) (2x+4) lớn hơn 4
d.(3x+4) (x-2) nhỏ hơn 0
e.(x+4) (2x-4) lớn hơn 0
f.(4x-8) (2x+5) nhỏ hơn 0
g.(2x-3) (3x+6) lớn hơn hoặc bằng 0
h.(3x-7) (x+1) nhỏ hơn hoặc bằng 0
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
Tìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
giúp mk nha mn mk đang cần gấp lắm
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
mà A\(\le0\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\) phải bằng 0 đê thỏa mãn điều kiện
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy....
b;c)I hệt câu a nên làm tương tự nhá
d)
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)
B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)
Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)
Vậy....
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
\(\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|\ge0\\\left|y+\dfrac{4}{3}\right|\ge0\\\left|z+\dfrac{7}{2}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\Rightarrow x=-\dfrac{9}{2}\\\left|y+\dfrac{4}{3}\right|=0\Rightarrow y=-\dfrac{4}{3}\\\left|z+\dfrac{7}{2}\right|=0\Rightarrow z=-\dfrac{7}{2}\end{matrix}\right.\)
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)
\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\\left|y-\dfrac{2}{5}\right|\ge0\\\left|z+\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}\right|=0\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}\right|=0\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|\ge0\\ \left|y+\dfrac{1980}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{matrix}\right.\)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1980}{1975}\right|+\left|z-2004\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\Rightarrow x=-\dfrac{19}{5}\\ \left|y+\dfrac{1980}{1975}\right|=0\Rightarrow y=-\dfrac{1980}{1975}\\\left|z-2004\right|=0\Rightarrow z=2004\end{matrix}\right.\)
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|\ge0\\ \left|y-\dfrac{1}{5}\right|\ge0\\\left|x+y+z\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{1}{5}\right|=0\Rightarrow y=\dfrac{1}{5}\\\left|x+y+z\right|=0\Rightarrow z+-\dfrac{11}{20}=0\Rightarrow z=\dfrac{11}{20}\end{matrix}\right.\)
Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)
\(\Rightarrow A\ge0\)
Mà ĐK đề là \(A\le0\)
\(\Rightarrow A=0\)
\(\left[{}\begin{matrix}\left|x+\dfrac{3}{4}=0\right|\Rightarrow x=-\dfrac{3}{4}\\\left|y-\dfrac{2}{5}=0\right|\Rightarrow y=\dfrac{2}{5}\\\left|z+\dfrac{1}{2}=0\right|\Rightarrow z=-\dfrac{1}{2}\end{matrix}\right.\)
Các câu còn lại tương tự nhé