\(\dfrac{a+b-\sqrt{2ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
Rút gọn biểu thức
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
Cho biểu thức:
\(D=\left(\dfrac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\dfrac{a+b+2ab}{1-ab}\right)\)
a) Tìm đkxđ và rút gọn \(D\)
b) Tính \(D\) với \(a=\dfrac{2}{2+\sqrt{3}}\)
c) Tìm giá trị lớn nhất của \(D\)
a: ĐKXĐ: a>=0; b>=0; ab<>1
Ta có: \(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}\)
\(=\frac{\sqrt{a}+a\cdot\sqrt{b}+\sqrt{b}+b\cdot\sqrt{a}+\sqrt{a}-a\cdot\sqrt{b}-\sqrt{b}+b\cdot\sqrt{a}}{1-ab}=\frac{2\cdot\sqrt{a}+2b\cdot\sqrt{a}}{1-ab}\)
\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}\)
Ta có: \(D=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}:\frac{1-ab+a+b+2ab}{1-ab}=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}\cdot\frac{1-ab}{ab+a+b+1}\)
\(=\frac{2\sqrt{a}\left(b+1\right)}{ab+a+b+1}=\frac{2\sqrt{a}\left(b+1\right)}{\left(b+1\right)\left(a+1\right)}=\frac{2\sqrt{a}}{a+1}\)
b: \(a=\frac{2}{2+\sqrt3}=\frac{2\left(2-\sqrt3\right)}{\left(2+\sqrt3\right)\left(2-\sqrt3\right)}\)
\(=\frac{4-2\sqrt3}{4-3}=4-2\sqrt3=\left(\sqrt3-1\right)^2\)
Thay \(a=\left(\sqrt3-1\right)^2\) vào D, ta được:
\(D=\frac{2\cdot\sqrt{\left(\sqrt3-1\right)^2}}{\left(\sqrt3-1\right)^2+1}\)
\(=\frac{2\left(\sqrt3-1\right)}{4-2\sqrt3+1}=\frac{2\sqrt3-2}{5-2\sqrt3}=\frac{\left(2\sqrt3-2\right)\left(5+2\sqrt3\right)}{\left(5-2\sqrt3\right)\left(5+2\sqrt3\right)}\)
\(=\frac{10\sqrt3+12-10-4\sqrt3}{25-12}=\frac{6\sqrt3+2}{13}\)
c: \(\frac{1}{D}=\frac{a+1}{2\sqrt{a}}\)
=>\(\frac{1}{D}-1=\frac{a+1-2\sqrt{a}}{2\sqrt{a}}=\frac{\left(\sqrt{a}-1\right)^2}{2\sqrt{a}}\ge0\forall a\) thỏa mãn ĐKXĐ
=>\(\frac{1}{D}\ge1\forall a\) thỏa mãn ĐKXĐ
=>D<=1∀a thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{a}-1=0\)
=>a=1(nhận)
Rút gọn biểu thức A = \(\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\) với \(x=\dfrac{a^2+b^2}{2ab}\)
thực hiện phép tính ( rút gọn biểu thức )
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\)
b) \(\dfrac{a-b}{\sqrt{a}+\sqrt{b}}-\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b: \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
=0
rút gọn biểu thức B= \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}\)
\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}\)
\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\sqrt{ab}\)
\(B=a\sqrt{b}-b\sqrt{a}\)
Với `a,b > 0` có:
`B=[a\sqrt{b}-b\sqrt{a}]/\sqrt{ab} :1/[\sqrt{a}.\sqrt{b}]`
`B=[a\sqrt{b}-b\sqrt{a}]/[\sqrt{ab}] .\sqrt{ab}`
`B=a\sqrt{b}-b\sqrt{a}`
\(\text{}\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\sqrt{ab}=a\sqrt{b}-b\sqrt{a}\)
rút gọn biểu thức
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}^3-\sqrt{b}^3}{a-b}\)
=\(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
=\(\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
=\(0\)
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
a: ĐKXĐ: x<>1/2
Sửa đề: \(A=\frac{3}{2\left(2x-1\right)}\cdot\sqrt{8x^4\left(4x^2-4x+1\right)}\)
\(=\frac{3}{2\left(2x-1\right)}\cdot\sqrt8\cdot\sqrt{x^4}\cdot\sqrt{\left(2x-1\right)^2}\)
\(=\frac{3}{2\left(2x-1\right)}\cdot2\sqrt2\cdot x^2\cdot\left|2x-1\right|=\frac{6\sqrt2\cdot x^2}{2\left(2x-1\right)}\cdot\left|2x-1\right|\)
=\(\pm3\sqrt2\cdot x^2\)
b: ĐKXĐ: b<>0
\(B=\frac{a-b}{b^2}\cdot\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}\)
\(=\frac{a-b}{b^2}\cdot\sqrt{a^2}\cdot\frac{\sqrt{b^4}}{\sqrt{\left(a-b\right)^2}}\)
\(=\frac{a-b}{b^2}\cdot\left|a\right|\cdot\frac{b^2}{\left|a-b\right|}=\left|a\right|\cdot\frac{a-b}{\left|a-b\right|}=\pm\left|a\right|\)
Cho biểu thức I = \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\).\(\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn I
a) Tính giá trị của I với a = 16, b = 4
\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)
\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)
Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)
\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)