Rút gọn biểu thức dạng chữ:
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\left(x+\sqrt{x}\right)\) với x ≥0, x ≠1
A= \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+1}{x-4}\) với x ≥0, x ≠ 4
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\right):\dfrac{1}{x+6\sqrt{x}+9}\) với x ≥ 0, x ≠ 9
Hộ vs ạ
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
RÚT GỌN BIỂU THỨC:
19) \(A = \left(\dfrac{1}{\sqrt{x}} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x} - 1} - \dfrac{\sqrt{x} + 1}{\sqrt{x} - 2}\right)\)
RÚT GỌN BIỂU THỨC:
12) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)
RÚT GỌN BIỂU THỨC:
11) \(A = \left(\dfrac{2\sqrt{x} + x}{x\sqrt{x} - 1} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{x + \sqrt{x} + 1}\right)\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
RÚT GỌN CÁC BIỂU THỨC SAU:
21) \(A = \left(\dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} - 1}\right) : \left(\sqrt{x} + \dfrac{\sqrt{x}}{\sqrt{x} - 1}\right) \)
22) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)
23) \(A = \left(\dfrac{\sqrt{x} - 4}{x - 2\sqrt{x}} - \dfrac{3}{2 - \sqrt{x}}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x}} - \dfrac{\sqrt{x}}{\sqrt{x} - 2}\right)\)
24) \(A = \left(\dfrac{2x + 1}{x\sqrt{x} - 1} + \dfrac{1}{1 - \sqrt{x}}\right) : \left(1 - \dfrac{x - 2}{x + \sqrt{x} + 1}\right)\)
25) \(A = 1 : \left(\dfrac{x + 2\sqrt{x} - 2}{x\sqrt{x} + 1} - \dfrac{\sqrt{x} -1}{x - \sqrt{x} + 1} + \dfrac{1}{\sqrt{x} + 1}\right)\)
26) \(A = \left(\dfrac{\sqrt{x}}{\sqrt{x} + 2} - \dfrac{3}{2 - \sqrt{x}} + \dfrac{3\sqrt{x} - 2}{x - 2}\right) : \left(\dfrac{\sqrt{x} + 3}{\sqrt{x} - 2} + \dfrac{2\sqrt{x}}{2\sqrt{x} - x}\right)\)
27) \(P = \left(\dfrac{4\sqrt{x}}{2 + \sqrt{x}} + \dfrac{8}{4 - x}\right) : \left(\dfrac{\sqrt{x} - 1}{x - 2\sqrt{x}} - \dfrac{2}{\sqrt{x}}\right)\)
rút gọn biểu thức sau :
a. \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
b. \(B=7:\left(a+b\right)+8:\left(a-b\right)-16b:\left(a^2-b^2\right)\)
Cho biểu thức B =\(\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a) Tìm điều kiện để B có nghĩa
b) Rút gọn B
c) Tính B với x =\(\dfrac{2-\sqrt{3}}{2}\)