Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Trần Phát

RÚT GỌN BIỂU THỨC:

11) \(A = \left(\dfrac{2\sqrt{x} + x}{x\sqrt{x} - 1} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{x + \sqrt{x} + 1}\right)\)

HT.Phong (9A5)
4 tháng 9 2023 lúc 11:19

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) (ĐK: \(x\ne1;x\ge0\))

\(A=\left[\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]:\left(\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(A=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

\(A=\dfrac{1}{\sqrt{x}+2}\)


Các câu hỏi tương tự
Phạm Trần Phát
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Xanh đỏ - OhmNanon
Xem chi tiết
Hoang Minh
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Dung Vu
Xem chi tiết
Hoàng Tiến Long
Xem chi tiết