Cho a,b,c,d là các số nguyên dương thỏa mãn : a+b+c+d=1000. Tìm giá trị lớn nhất của P= a/c+ b/d.
Cho a;b;c;d là các số nguyên dương thỏa mãn : a+b = c+d =1000
Tìm giá trị lớn nhất của \(\frac{a}{c}+\frac{b}{d}\)
Cho a,b,c là các số nguyên dương thỏa mãn a+b+c+d=99 tìm giá trị lớn nhất và nhỏ nhất của abcd
Bài này làm cũng dài nên nhường bạn khác
Các số nguyên dương a,b,c,d thỏa mãn đẳng thức : a+b = c+d = 1000. Hỏi khi nào thì tổng \(\frac{a}{c}+\frac{b}{d}\) đạt giá trị lớn nhất?
\(\text{Ta co}:a+b=c+d=1000\text{ va }\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số = nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{1000}{1000}=1\)
\(\Rightarrow MAX:\frac{a}{c}+\frac{b}{d}=1+1=2\)
Các số nguyên dương a,b,c,d thỏa mãn đẳng thức : a+b = c+d = 1000. Hỏi khi nào thì tổng a/c +b/d đạt giá trị lớn nhất?
Mình đâu có dữ liệu đó đâu
Chờ a,b,c,d là các số nguyên dương thỏa mãn a+b=c+d=25
Tìm giá trị lớn nhất của M=\(\frac{c}{b}+\frac{d}{a}\)
Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)
Mà \(a+b=c+d=25\)
Nên \(\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)
Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)
cho các số nguyên dương a,b,c,d thoả mãn a+b=c+d=1000 hỏi khi nào tổng a/c+b/d đạt giá trị lớn nhất
cho a , b ,c ,d là các số ngyên dương thỏa mãn a + b = c + d = 25 . Tính giá trị lớn nhất của M = c/b + d/a
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Các số nguyên dương a,b,c,d thỏa mãn đẳng thức : a+b = c+d = 1000. Hỏi khi nào thì tổng ac +bd đạt giá trị lớn nhất?
Lời giải:
Không mất tổng quát, giả sử $\frac{a}{c}\leq \frac{b}{d}\Rightarrow ad\leq bc$
$\Rightarrow \frac{a}{c}\leq \frac{a+b}{c+d}\leq \frac{b}{d}$
$\Leftrightarrow \frac{a}{c}\leq 1\leq \frac{b}{d}$
Nếu $b\leq 998$:
$d\geq 1\Rightarrow \frac{b}{d}\leq 998$. Kết hợp với $\frac{a}{c}\leq 1$ suy ra $P\leq 999(1)$
Nếu $b=999\Rightarrow a=1$
$P=\frac{1}{c}+\frac{999}{d}=\frac{1}{c}+\frac{999}{1000-c}$
$=\frac{1000+998c}{c(1000-c)}=\frac{1000+998c}{(c-1)(999-c)+999}$
Vì $1\leq c\leq 999\Rightarrow 10000+998c\leq 1000+998.999$
$(c-1)(999-c)+999\geq 999$
$\Rightarrow P\leq \frac{1000+998.999}{999}=999+\frac{1}{999}(2)$
Từ $(1);(2)\Rightarrow P_{\max}=999+\frac{1}{999}$ khi $a=d=1; b=c=999$
Cho a,b,c,d là các số nguyên dương thoả mãn a + b + c + d = 25. Tìm giá trị lớn nhất của M = c/b + d/a
GIẢI HỘ MÌNH VỚI MÌNH ĐANG CẦN Ạ ! THANKS
Câu 1: Cho a,b là các số dương thỏa mãn a+b=2016. Tìm giá trị lớn nhất của biểu thức P=ab
a.10082 b,2016 c.20162 d.4.20162
Câu 2: Cho a,b là các số dương thỏa mãn ab=16 và đặt P=\(\dfrac{a+b}{2}\). Khẳng định nào sau đây là đúng
a.P≥4 b.P≥8 c.\(\dfrac{17}{2}\) d.5
Câu 3: Cho a, b là các số dương. Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a}{b}+\dfrac{b}{a}\)
a.2 b.0 c.1 d.-2
Câu 4: Tìm mệnh đề đúng
a. a2-a+1>0,∀a b. a2+2a+1>0,∀a c.a2-a≥0, ∀a d.a2-2a-1≥0,∀a
giúp em với ạ
c1:áp dụng bđt AM-GM:
\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)
=> đáp án A
c2: tương tự c1 . đáp án b
3.
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Đáp án A
4.
\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)
Đáp án A
Cho a b c là các số nguyên dương thỏa mãn: 1/a+1/b+1/c <1
Tìm giá trị lớn nhất của A = 1/a+1/b+1/c
=>a≤3b
=>b≤4c
=>c≤d
=>d≤2023
do đó a≤3.4.5.2023=121380
vì a lớn nhất nên a=121380