Phân tích đa thức thành nhân tử :
a, x2+7x+12
b, x2+6x+8
c, x2-10x+16
d, x2-8x+15
Phân tích đa thức thành nhân tử
a, 7x - 14
b, 2x - 2y + x2 - xy
c, 6x + 12
d, x2 - 8x - 9x2 - 15
a, 7x - 14
= 7(x-2)
b, 2x - 2y + \(x^2\)- xy
= (2x-2y) + (\(x^2\)-xy)
= 2(x-y) + x(x-y)
= (x-y)(2+x)
c, 6x + 12
= 6(x+2)
\(a,=7\left(x-2\right)\\ b,=2\left(x-y\right)+x\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=6\left(x+2\right)\\ d,\text{Sai đề}\)
Phân tích các đa thức sau thành nhân tử:
a) x 2 + 6x + 8; b) 2 x 2 + 14x +12;
c) 9 x 2 + 24x +15; d) 6 x 2 -xy-7 y 2 .
a) (x + 2)(x + 4). b) 2(x + 6)(x + l).
c) 3(3x + 5)(x + l). d) (6x -7y)(x + y).
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 4x + 1; b) 16 y 3 - 2 x 3 - 6x(x + 1) - 2;
c) 2 x 2 +7x + 5; d) x 2 - 6xy - 25 z 2 +9 y 2
phân tích đa thức thành nhân tử :
a) x2 - 6x +5
b) x2 - x - 12
c) x2 + 8x +15
d) 2x2 - 5x -12
e) x2 - 13x + 36
a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)
b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)
d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)
e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Câu 14: (2,0 điểm) Phân tích đa thức sau thành nhân tử a) c) x2 + 25 – 10xd ) x3 – 8y3 Câu 15: (1,0 điểm) Tìm x, biết a) 3x.(x-1) + x-1=0 b) x2 - 6x = 0 Câu 16: (2,0 điểm) Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E ,F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. Câu 17: (1,0 điểm) Cho hình thang ABCD (AB// CD) có O là giao điểm 2 đường chéo. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H. Chứng minh OE= OH.
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:
a) 4 x 2 - 12xy + 9 y 2 - 8x + 12y,
b)3 x 2 + 20x - 7;
c) ( 3 x - 1 ) 4 + 2(9 x 2 - 6x + 1) + 1;
d) 2 x 3 -3 x 2 +2x - 1.
1. Phân tích thành nhân tử
a) x2 + 7x + 10; b) x2 – 21x + 110; c) 3x2 + 12x + 9; d) 2ax2 - 16ax + 30a.
2. Phân tích thành nhân tử
a) x2 + x – 6; b) x2 – 2x – 15; c) 4x2 - 12x - 160; d) 5x2y - 10xy - 15y.
3. Phân tích thành nhân tử
a) x2 – xy – 20y2 ; b) 3x4 + 6x2y2 – 45y4 ; c) 2bx2 – 4bxy - 70y2
4. Giải phương trình
a) x2 + x = 72; b) 3x2 – 6x = 24 c) 5x3 – 10x2 = 120x.
5. Phân tích thành nhân tử
a) 3x2 -11x + 6; b) 8x2 + 10x – 3 ; c) 8x2 -2x -1 .
Phân tích đa thức thành nhân tử:
a) x 2 - 5x + 6; b) 3 x 2 + 9x - 30;
c) 3 x 2 - 5x - 2; d) x 2 -7xy + 10 y 2 ;
e) x 3 -7x-6; g) x 4 + 2 x 3 + 6x - 9;
h) x 2 -2x - y 2 +4y - 3.
a) (x - 2)(x - 3). b) 3(x - 2)(x + 5).
c) (x - 2)(3x + 1). d) (x-2y)(x - 5y).
e) (x + l)(x + 2)(x - 3). g) (x-1)(x + 3)( x 2 + 3).
h) (x + y - 3)(x - y + 1).
phân tích đa thức thành nhân tử
a/ x2 - 4x + 4 – y2 e/ 25x2 - 4y2
b/ 4x4 + 8x3 + 4x2 f/ x2 + 7x + 12
c/ x3y2 – 2x2y3 + xy4 i/ x2 - 5x - 14
d/ x2 - y2 – 7x + 7y
giúp mình với mình đang cần gấp ạ
\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)