1/a+2 + 3/b+4 <= c+1/c+3 . Tim Qmin =(a+1)(b+1)(c+1) . Tim dau bang xay ra nhu the nao ???
cho (a+1)(b+1)(c+1)=1 , (a+2)(b+2)(c+2)=2 , (a+3)(b+3)(c+3)=3 hỏi (a+4)(b+4)(c+4)=?
A. 1 - b, 2 - a, 3 - d, 4 - c.
B. 1 - b, 2 - d, 3 - a, 4 - c.
C. 1 - c, 2 - a, 3 - d, 4 - b.
D. 1 - c, 2 - b, 3 - d, 4 - a.
Câu 1: Các viết tập hợp nào sau đây đúng?
A. A = [1; 2; 3; 4]
B. A = (1; 2; 3; 4)
C. A = { 1, 2, 3, 4}
D. A = {1; 2; 3; 4}
Câu 2: Cho B = {a; b; c; d}. Chọn đáp án sai trong các đáp án sau?
A. a ∈ B B. b ∈ B C. e ∉ B D. g ∈ B
1C. A = { 1, 2, 3, 4} và D. A = {1; 2; 3; 4}.
Bài 10 : Xét sự thăng hàng của ba điểm A , B , C
1 / A ( −1 ; 1 ) , B ( 0 ; −1 ) , C ( 1 ; −3 )
2 / A ( 2 : 0 ) , B ( 5 : 1 ) , C ( -1 ; -1 )
3 / A ( 4 : 3 ) , B ( 2 : 0 ) .C ( 0 ; −3 )
4 / A ( −1 ; 2 ) , B ( 2 : 3 ) , C ( 4 : −1 )
Nối cột A tương ứng với cột b
A. 1-b,2-a,3-d,4-c.
B. 1-a,2-b,3-c,4-d.
C. 1-d,2-c,3-b,4-a.
D. 1-d,2-a,3-c,4-b.
a,b,c>0 thỏa mãn `a^4 +b^4 +c^4 =3`. CMR: \(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}>=\dfrac{3}{2}\)
a,b,c>0 thỏa mãn `a^4 +b^4 +c^4 =3`. CMR \(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}>=\dfrac{3}{2}\)
A. 1-c; 2-a, d; 3-g; 4-b, e.
B. 1-c; 2-a, e; 3-d, g; 4-b.
C. 1-a, d; 2-c; 3-b, e; 4-g.
D. 1-a, e; 2-c, d; 3-b; 4-g.
cho a = 1 +4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + 4 mũ 5 + 4 mũ 6 và b = 4 mũ 7 tính b -3a
cho a = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... +2 mũ 2008 và b = 2 mũ 2009 tính b - a
cho a = 1 +3 + 3 mũ 3 + ... +3 mũ 2006 và b = 2007 tính b - 2a
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)