cho tam giac DEF vuông ở D có DE=6cm, DF=8cm, đường cao DK phân giác EM cắt DK ở I(M ∈DF)
a) tính DF, DM, MF
b)CM DEM∼KEI
c) cm DE.EI=EM.EK
d) P là trung điểm IM, tính S△DIM
giúp mk vs chiều mk ktra HK r
cho tam giac DEF vuông ở D có DE=6cm, DF=8cm, đường cao DK phân giác EM cắt DK ở I(M ∈DF)
a) tính DF, DM, MF
b)CM DEM∼KEI
c) cm DE.EI=EM.EK
d) P là trung điểm IM, tính S△DIM
giúp mk vs mai mk ktra HK r
cho tam giac DEF vuông ở D có DE=6cm, DF=8cm, đường cao DK phân giác EM cắt DK ở I(M ∈DF)
a) tính DF, DM, MF
b)CM DEM∼KEI
c) cm DE.EI=EM.EK
d) P là trung điểm IM, tính S△DIM
Cho tam giác DEF vuông tại D có DE=6cm,DF=8cm,đường cao DH. Đường p/g EM cắt DH tại I ( M thuộc DF )
a) CMR :DE2=EH.EF
b) Tính độ dài các đoạn thẳng EF ,EH,DM,MF
c) CM : DE.EI=EM.EH
d) Gọi K là trung điểm của IM . Tính diện tích tam giác DKM
Cho \(\Delta\)DEF vuông tại D có DE=6cm ; DF=8cm , đường cao DH.Đường phân giác EM cắt DH tại I ( M\(\in\)DF )
a) CMR : DE2=EH.EF
b) tính độ dài các đoạn thẳng : EF , EH , DM và MF
c) CM: DE.EI=EM.EH
d) Gọi K là trung điểm của IM . Tính S\(\Delta\)DKM
Cho tam giác DEF vuông tại D có DE=6cm, DF =8cm, đường cao DH. Đường phân giác EK cắt DH tại I (K ∈ DF)
a) Tính độ dài đoạn thẳng EF,DK,KF
b) Chứng minh △DEK∼△HEI
c) Chứng minh DE.EI=EK.EH
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho \(\Delta\)DEF vuông tại D có DE = 6cm , DF = 8cm , đường cao DH . Đường phân giác EM cắt DH tại I (M\(\varepsilon\) DF )
a) CMR : DE2=EH.EF
b) Tính độ dài các đoạn thẳng EF , EH , DM , MF
c) CM : DE.EI=EM.EH
d) Gọi K là trung điểm của IM . Tính S\(\Delta\)DKM
a: Xét ΔEDF vuông tại D có DH là đường cao
nên \(DE^2=EH\cdot EF\)
b: EF=10cm
\(EH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
Xét ΔDEF có EM là phân giác
nên DM/DE=FM/FE
=>DM/3=FM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{3}=\dfrac{FM}{5}=\dfrac{8}{8}=1\)
=>DM=3cm; FM=5cm
Cho tam giác DEF biết DE = 6 cm, DF = 8 cm, EF = 10cm.
a) Cmr : Tam giác DEF là tam giác vuông
b) Vẽ DK là đường cao. Tính DK và FK
c) Giải tam giác EDK
d) Vẽ phân giác trong EM của góc DEF. Tính MD, MF, ME.
e) Tính sin F trong các tam giác vuông DFK và DEF. Từ đó suy ra : ED . DF = DK . EF
a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)
nên ΔDEF vuông tại D