Cho tam giác DEF vuông tại D có DE=6cm, DF=8cm. Vẽ DH vuông góc với EF tại H a,chứng minh tam giác HED đồng dạng với tam giác DEF b,tính EF,DH c, vẽ DI là phân giác của góc EDH cắt EH tại I. Tính IE, IH
cho tam giác DEF vuông tại D có DE=12cm, DF=20cm. kẻ đường cao DH (H ∈ EF)
a) chứng minh: DF.ED=FE.DH
b) tính DF, EH, HF
c) kẻ HN⊥DE tại N (N∈DE), HM⊥DF tại M (M∈DF) chứng minh: ∇DMN∾∇DEF
d) chứng minh: DN/DE+DM/DF=1
cho tam giác DEF vuông tại D có DE=12cm, DF=20cm. kẻ đường cao DH (H ∈ EF)
a) chứng minh: DF.ED=FE.DH
b) tính DF, EA, HF
c) kẻ HN⊥DE tại N (N∈DE), HM⊥DF tại M (M∈DF) chứng minh: ∇DMN∾∇DEF
d) chứng minh: DN/DE+DM/DF=1
Bài toán.
Cho tam giác DEF có đường trung tuyến DM. Đường phần giác góc DME cát DE tại A,phân giác góc DMF cắt DF tại B.
a) Cho DA=5 cm, AE=3 cm, DM=10 cm. Tinh độ dài các cạnh DE, EF.
b) Chứng minh AB//EF
Xin lỗi vì làm phiền ạ,hi vọng các bạn cho mình lời giải sớm nhất nhé,mình chân thành cảm ơn ạ <3
cho tam giác vuông abc vuông tại a biết ab = 6cm ac = 8cm đường cao AH a) chứng minh tam giác ABC tương đương tam giác HBA
b) chứng minh AB bình = AH.BC
c) tính AH
d) tia phân giác A cắt BC tại M, tính BM và MC
Cho
ΔABC∆ABC
vuông tại A có phân giác BD, AB = 6 cm, AC = 8cm. Đường thẳng vuông góc với AC tại D cắt BC ở E.
a) Tính AD? DC?
b) Chứng minh rằng
Δ CED ∆ CED
đồng dạng với
Δ CBA∆ CBA
?
c) Kẻ DF // BC (F nằm trên BA). Chứng minh rằng
Cho ABC vuông tại A có AB = 6cm, AC = 8cm. Đường cao AH cắt tia
phân giác DB tại I.
a) Chứng minh IA.BH = IH.BA
b) Chứng minh AB2 = BH.BC.
c) Tính tỉ số diện tích của ABH và tam giác ABC
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH, tia phân giác của góc ABC cắt AC tại F và AH tại E. a) Tính BC, AF, FC b) Chứng minh tam giác ABC đồng dạng tam giác HBA c) Chứng minh AE.AF=EH.FC Mong các bạn ra đáp án giúp mình câu này với Thank you các bạn❤❤❤
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB