tính a, ( 2a+9/9-4a^2) + (-1/2a+3)
b, ( 3a-1/a^2-1) + ( 1/1-a)
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
cmr a-{[((16-a)a)/(a^2-4)]+(3+2a)/(2-a)-(2-3a)/(a+2)}:(a-1)/(a^3+4a^2+4a)=2a/1-a
Rút gọn:
\(A=\sqrt{\left(a-3\right)^2}-3a\) với a < 3
\(B=4a+3-\sqrt{\left(2a-1\right)^2}\) với a > 1/2
\(C=\dfrac{4}{a^2-4}\sqrt{\left(a-2\right)^2}\) với a < 2
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{a^2+6a+9}{16}}\) với a < -3
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
\(A=\sqrt{\left(a-3\right)^2}-3a\)
=3-a-3a
=3-4a
Thực hiện phép tính,rút gon bt:
\(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(\dfrac{4a^2-3a+5}{a^3-1}-\dfrac{1-2a}{a^2+a+1}+\dfrac{2y^2a-1}{ }\)
tìm a ( a^4 +3a^2+2)x=(2a^3+2a)x+2a^3-4a^2+4a với a là 1 hằng số
giúp mik gấp đc ko ạ
Rút gọn
a) A=3(x+1)^2/x^3-1 - 1-x/x^2+x+1 + 3/1-x
b) B= 2a/a^2-3a + a/a-1 + 2a/a^2-4a+3
Giải zùm mk vs
Chứng minh đẳng thức:
a - [\(\dfrac{\left(16-a\right)a}{a^2-4}\) + \(\dfrac{3+2a}{2-a}\) - \(\dfrac{2-3a}{a+2}\)] : \(\dfrac{a-1}{a^3+4a^2+4a}\) = \(\dfrac{3a}{1-a}\)
Ta có:
\(VT=\left[\dfrac{16a-a^2-\left(3+2a\right)\left(a+2\right)-\left(2-3a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right]:\dfrac{a-1}{a^3+4a^2+4a}\)
\(=\dfrac{16a-a^2-3a-6-2a^2-4a-2a+4+3a^2-6a}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}\)
\(=\dfrac{a-2}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}=\dfrac{a\left(a+2\right)}{a-1}\left(a\ne\pm2;a\ne1\right)\)
\(=a-\dfrac{a\left(a+2\right)}{a-1}=\dfrac{a^2-a-a^2-2a}{-1}=\dfrac{-3a}{a-1}=\dfrac{3a}{1-a}=VP\left(đpcm\right)\)