Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kira uchiha -.-
Xem chi tiết
Lê Ng Hải Anh
11 tháng 6 2021 lúc 16:55

a, Vì ΔABC vuông tại A nên theo ĐL Pytago, ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100

⇒ BC = 10 (cm)

b, Vì ΔABC vuông tại A nên theo ĐL Pytago, ta có:

BC2 = AB2 + AC2 

⇒ AC2 = BC2 - AB2 = 202 - 122 = 256

⇒ AC = 16 (cm)

Bich Nga Lê
Xem chi tiết
HT.Phong (9A5)
1 tháng 10 2023 lúc 6:09

Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)

\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2019 lúc 11:11

a, Sử dụng tỉ số cosC và sinC, tính được

a =  20 3 3 cm, c =   10 3 3 cm và  B ^ = 60 0

b, Sử dụng tỉ số sinB và cosB, tính được:

b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm

c, Sử dụng định lý Pytago và tỉ số sinB, tính được:

c =  5 5 cm, sinB =  10 15 =>  B ^ ≈ 41 , 8 0 ,  C ^ ≈ 48 , 2 0

d, Tương tự c) ta có

a =  193 cm, tanB =  12 7 =>  B ^ ≈ 59 , 7 0 ,  C ^ = 30 , 3 0

pink hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 23:54

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2019 lúc 11:05

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 8 2018 lúc 12:25

Đáp án D

Pé Ánh
Xem chi tiết
Thiện
10 tháng 9 2018 lúc 20:49

a)\(12^2+16^2=20^2\)(144+256=400)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)

\(\Rightarrow\Delta ABC\)vuông tại A

b)Xét tg ABC vuông tại A có đcao AH(cmt)

Ta có:AB.AC=BC.AH(Hệ thức lượng)

          12.16=20.AH

          192=20.AH

           AH=192:20=9.6

c)cosB=AB/BC,cosC=AC/BC

\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)

\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)

\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)

\(\Rightarrow AB.cosB+AC.cosC=20\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2019 lúc 7:04

Áp dụng định lý Pytago cho  vuông tại A có:

Đáp án cần chọn là: B

Lê Phương Mai
Xem chi tiết
ILoveMath
2 tháng 3 2022 lúc 16:46

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)