Chứng minh rằng: \(\frac{sin^3\alpha+cos^3\alpha}{sin\alpha+cos\alpha}=1-sin\alpha cos\alpha\)
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
1.
\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)
\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)
2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)
\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)
\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)
\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)
1. Cho tam giác $ABC$. Chứng minh rằng $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2\sin A.\sin B.\cos C$.
2. Chứng minh rằng:
a. $\sin \alpha .\sin \left(\dfrac{\pi }{3} -\alpha \right).\sin \left(\dfrac{\pi }{3} +\alpha \right)=\dfrac{1}{4} \sin 3\alpha $
b. $\sin 5\alpha -2\sin \alpha \left({\rm cos} {\rm 4}\alpha +\cos 2\alpha \right)=\sin \alpha $
Chứng minh rằng: \(\frac{\sin\alpha}{1+\cot\alpha}+\frac{\cos\alpha}{1+\tan\alpha}=\frac{1}{\sin\alpha+\cos\alpha}\)
vế trái =\(\frac{\sin}{1+\cot}\)+\(\frac{\cos}{1+\tan}\)= \(\frac{sin}{1+\frac{cos}{sin}}\)+\(\frac{cos}{1+\frac{sin}{cos}}\)= \(\frac{sin^2}{\sin+cos}\)+\(\frac{cos^2}{sin+cos}\)= \(\frac{sin^2+cos^2}{sin+cos}\)=\(\frac{1}{sin+cos}\)= vế phải
Chứng minh rằng:
\(\frac{sin\alpha+cos\alpha-1}{sin\alpha-cos\alpha+1}=\frac{cos\alpha}{1+sin\alpha}\)
mọi người giúp mình vs =((
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
c/ \(C=sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cos^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+cos^4x+2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2=1\)
Biết tan α=3. Tính giá trị các biểu thức sau:
a)\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b)\(\frac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-5\cos\alpha}\)
c)\(\frac{1+2\cos^2\alpha}{\sin^2\alpha-\cos^2\alpha}\)
d)\(\frac{\sin^4\alpha+\cos^4\alpha}{1+\sin^2\alpha}\)
\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)
a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)
b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)
c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)
d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)
Chứng minh:
a)\(\cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
b)\(\frac{cos\alpha}{1-sin\alpha}=\frac{1+sin\alpha}{cos\alpha}\)
c)\(\frac{\left(sin\alpha+cos\alpha\right)^2-\left(sin\alpha-cos\alpha\right)^2}{sin\alpha.cos\alpha}=4\)
Mình cần gấp!!!
a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)
b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)
\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng )
c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)
um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!
mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:
\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)
CẢM ƠN bạn nhiều lắm luôn nha!!!!!
Chứng minh các hệ thức sau:
a) \(\frac{1-cos\alpha}{sin\alpha}=\frac{sin\alpha}{1+cos\alpha}\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)
\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)
\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )
\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)