chứng minh bất phương trình
a^2/a^4+1 =1/2
1. Với số a bất kì, chứng tỏ a(a+2)<(a+1)^2
2. Chứng minh rằng: Trong 3 số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích 2 số còn lại
1. Vì (a+1)^2=a^2+2a+1^2=a^2+2a+1 (1)
a(a+2)=a^2+2a (2)
Từ (1)và(2) suy ra a(a+2)<(a+1)^2
Chứng minh các bất phương trình sau :
a) (2a+1)(4a-1)<2a(4a+1)
b) (3-b)^2>b(b-6)
Chứng minh bất đẳng thức a^2+b^2≥ab
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra ⇔ a=b
chứng minh với n là số tự nhiên bất kì thì (n+1)^2+(n+2)^2+(n+3)^2+(n+4)^2 không thể tận cùng bằng chữ số 3
khai triển ta được 4n2+20n+30 = 2(2n2+10n+15)
do 2(2n2+10n+15) luôn chẳng do đó nó tận cùng bằng 0; 2; 4; 6; 8 không thể tận cùng là 3
giải phương trình
a, \(\sqrt{x-2}=x+1\)
b, \(\sqrt{1+x^2}-3=x\)
a) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow x-2=x^2+2x+1\)
\(\Leftrightarrow x^2+x+3=0\)(vô lý do \(x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\))
Vậy \(S=\varnothing\)
b) ĐKXĐ: \(x\ge-3\)
\(pt\Leftrightarrow1+x^2=x^2+6x+9\)
\(\Leftrightarrow6x=-8\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)
Chứng minh bất đẳng thức: (a+b)^2<=2(a^2+b^2)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Vậy ta có đpcm
Giải các phương trình
a)(3x-2)(2x+5)=0
b)\(\dfrac{x-1}{x+1}\)+\(\dfrac{4}{1-x^2}=\)\(\dfrac{2\left(x+1\right)}{x-1}\)
c)/X+1/+/x\(^2\)+x-2/=x\(^3\)-1
a)\(=>\left[{}\begin{matrix}3x-2=0\\2x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}3x=2\\2x=-5\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
b.\(\dfrac{x-1}{x+1}+\dfrac{4}{1-x^2}=\dfrac{2\left(x+1\right)}{x-1}\)
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-1\right)-4}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(x-1\right)^2-4=2\left(x+1\right)^2\)
\(\Leftrightarrow x^2-2x+1-4=2x^2+4x+2\)
\(\Leftrightarrow x^2+6x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)
Cho 3 số tự nhiên bất kì. Chứng minh rằng hiệu của 2 số bất kì luôn chia hết cho 2
Có 3 số => luôn chọn ra được 2 số cùng tính chẵn lẻ
=> hiệu của chúng chia hết cho 2
=> đpcm
Bài 1: Cho a,b,c là các số dương. Chứng minh các bất đẳng thức:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
( dùng cô -si )
bài 2( dùng định nghĩa )
1) Cho abc=1 và \(a^3>36\)Chứng minh rằng \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)
2) Chứng minh rằng a) \(x^4+y^4+z^4+1\ge2x\left(xy^2-x+z+1\right)\)
b) Với mọi số thực a,b,c ta có: \(a^2+5b^2-4ab+2a-6b+3>0\)
c) \(a^2+2b^2-2ab+2a-4b+2\ge0\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)
Có đpcm
Ồ bài 2 a mới sửa đề ak:)