Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2017 lúc 11:04

Đáp án đúng : C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2017 lúc 2:53

Ta có:

Xét hàm số

 Hàm số f t  đồng biến trên 0 ; + ∞

 

 

 ta có:

 

Chọn: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2017 lúc 17:02

Đáp án B

Ta có: log 5 4 a + 2 b + 5 a + b = a + 3 b − 4  

⇔ log 5 4 a + 2 b + 5 + 4 a + 2 b + 5 = log 5 5 a + 5 b + 5 a + 5 b  

Xét hàm số f t = log 5 t + t t > 0 ⇒ f t  đồng biến trên 0 ; + ∞  

Do đó f 4 a + 2 b + 5 = f 5 a + 5 b ⇔ 4 a + 2 b + 5 = 5 a + 5 b  

⇔ a + 3 b = 5 ⇒ T = 5 − 3 b 2 + b 2 = 10 b 2 − 30 b + 25 = 10 b − 3 2 2 + 5 2 ≥ 5 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2019 lúc 2:22

Vì:  a + 1 1 + b 2 = a + 1 − b 2 ( a + 1 ) 1 + b 2 ;   1 + b 2 ≥ 2 b   n ê n   a + 1 1 + b 2 ≥ a + 1 − b 2 ( a + 1 ) 2 b = a + 1 − a b + b 2

Tương tự:  b + 1 1 + c 2 ≥ b + 1 − b c + c 2 ;   c + 1 1 + a 2 ≥ c + 1 − c a + a 2 ⇒ M ≥ a + b + c + 3 − ( a + b + c ) + ( a b + b c + c a ) 2 = 3 + 3 − ( a b + b c + c a ) 2

Chứng minh được:  3 ( a b + b c + c a ) ≤ ( a + b + c ) 2 = 9 a c ⇒ 3 − ( a b + b c + c a ) 2 ≥ 0 ⇒ M ≥ 3

Dấu “=” xảy ra khi a = b = c = 1. Giá trị nhỏ nhất của M bằng 3.

Nguyễn Viễn
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Khanh7c5 Hung
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2021 lúc 15:32

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

VAN NGOC LE NA
22 tháng 6 2021 lúc 9:45

thế bạn bt hok

Khách vãng lai đã xóa
Tạ Uyên
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 12:56

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2019 lúc 16:38

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1