Cho các số thực a, b, c thỏa mãn 2.( b2 + bc + c2) = 3.( 3 – a2). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a + b + c
với a,b,c là các số thực dương thỏa mãn a2=2(b2+c2), tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
{giải giúp mình với mai tớ kiểm tra rồi}
Cho các số dương a, b thỏa mãn: a+b+1=8ab
Tìm giá trị nhỏ nhất của biểu thức: A=\(\frac{a^2+b^2}{a^2b^2}\)
Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).
Cho các số thực a, b, c thỏa mãn a+b-2c=0 và a2+b2+8c2=8ab+bc+ca
CMR a=b=c
1 Tìm giá trị nhỏ nhất của A=\(\frac{a^2+b^2}{a^2b^2}\)biết rằng a,b là hai số dương thỏa mãn a+b+1=8ab
2 Tìm giá trị nhỏ nhất của biểu thức K= xy(x-2y)(y+6)+13x2+4y2-26x+24y+46
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho các số thực dương a b thỏa mãn ab=1 tìm giá trị nhỏ nhất của P= a^2+b^2+5/(a+b+3)
Cho a, b≥ 0 thỏa mãn: a2+ b2 ≤ 2.
Tìm giá trị lớn nhất của M= a. √(3a(a+2b)) + b. √(3b(b+2a))