n.0=?
a=32+2 thì a=?
n+1-1 =?
ta thừa nhận tính chất : với a khác 0, a khác (+-1), nếu a^m = a^n thì m=n
dựa vào đó hãy làm bài toán sau:
a) (1/2)^m = 1/32
b) 343/125 = (7/5)^n
Ta thừa nhận tính chất sau đây: với a khác 0, a khác 0 âm dương 1 nếu a mũ m= a mũ n thì m=n. dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a) 1 phần 2 tất cả mũ m= 1 phần 32
b) 343 phần 125= 7 phần 5 mũ n
Giair giúp mk bài này nha mk đang cần gấp
(1/2)^m = 1/32
mà 1/32 = (1/2)^5 nên m = 5
343/125= (7/5)^n
mà 343/125 = (7/5)^3 nên n=3
Ta thừa nhận tính chất sau đây: Với a khác 0, a khác +_ 1, nếu a^m = a^n thì m=n. Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a,\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b,\(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(=>m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(=>n=3\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m =5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
\(\left(\frac{1}{2}\right)^M\)=\(\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^M=\left(\frac{1}{2}\right)^5\)
-->M=5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
--> n=3
Ta thừa nhận tính chất sau đây: Với a khác 0, a khác + hoặc - 1, nếu am = an thì m = n. Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a)\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
a, ( 1/2 ) ^ m = ( 1/2) ^5
=> m = 5
b, ( 7/5) ^n = 343 / 125
=> ( 7/5)^n = (7/5) ^ 3
=> n = 3
Đúng cho tui nha
\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=>m=5
\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=>n=3
1) Viết các số thập phân vô hạn tuần hoàn thành phân số
a) 0,(75) b) 0,(12) c) 2.12(345) d) 1,1(234) e) -2,23(123)
2) Chứng tỏ rằng
a) 0,(32) + 0,(67) = 7
b) 0,(33) . 3 = 1
Câu 2:
a: 0,(32)+0,(67)
=32/99+67/99
=1
b: \(0.\left(33\right)\cdot3=\dfrac{1}{3}\cdot3=1\)
= : Cho đơn th ứ c A= 2 xy 2 .( 1 2 22 x y x ) a)Thu g ọ n đơn th ứ c b)Tìm b ậ c c ủ a đơn th ứ c thu g ọ n c)Xác đ ị nh ph ầ n h ệ s ố ,ph ầ n bi ế n c ủ a đơn th ứ c thu g ọ n d)Tính giá tr ị c ủ a đơn th ứ c t ạ i x=2 ; y= - 1 e) Ch ứ ng minh r ằ ng A luôn nh ậ n giá tr ị dương v ớ i m ọ i x 0 và y 0 Câu 2: Tính a) 5 x 2 y - 3 x 2 y +7 x 2 y b) 1 2 32 x y z + 2 3 32 x y z - 32 3 x y z 4 c) 3 3 3 3 1 5 x y x y x y 4 2 8
Với những giá trị nguyên nào của n thì 2n^2 − n chia hết cho n + 1.
A. n ∈ {−4; −2; 0}
B. n ∈ {−4; −2; 0; −2}
C. n ∈ {−4; −2; 0; 2}
D. n ∈ {−4; −2; 0; 2; 4}
Với những giá trị nguyên nào của n thì 2n^2 − n chia hết cho n + 1.
A. n ∈ {−4; −2; 0}
B. n ∈ {−4; −2; 0; −2}
C. n ∈ {−4; −2; 0; 2}
D. n ∈ {−4; −2; 0; 2; 4}
ta thừa nhận tính chất sau đây: Với a khác 0 a khác + và - 1, am = an thì m = n
Duqaj vào tính chất này , hãy tìm các số tự nhiên m và n, biết:
a) (1:2)m = 1: 32
b) 343:125 = (7:5)n
a) \(\left(1:2\right)^m=1:32\Leftrightarrow\left(\frac{1}{2}\right)^m=\frac{1}{32}\Leftrightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)
b) \(343:125=\left(7:5\right)^n\Leftrightarrow\frac{343}{125}=\left(\frac{7}{5}\right)^n\Leftrightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)
a, \(\left(1:2\right)^m=1:32=\left(1:2\right)^5\Rightarrow m=5\)
b, \(343:125=\left(7:5\right)^n\Rightarrow\left(7:5\right)^3=\left(7:5\right)^n\Rightarrow n=3\)
Bài 1 – Chứng minh rằng: a) A = 1 + 3 + 32 + ...... + 311 chia hết cho 4. b) B = 165 + 215 chia hết cho 33. c, ∀𝑛 ∈ 𝑁 thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30. d, ∀𝑛 ∈ 𝑁 thì tích (n + 3)(n + 6) chia hết cho 2
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)