Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ctvhoc24h
Xem chi tiết
Nguyễn Việt Hoàng
8 tháng 11 2019 lúc 21:29

Từ giả thiết , ta có :

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)

\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)

Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :

\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)

\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra:

\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)

\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:

\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\) 

Khách vãng lai đã xóa
Nguyễn Đức Hiếu
10 tháng 11 2019 lúc 16:21

ta có:

xyz=(1-x).(1-y).(1-z)                                 (1)

=>1=(1:x-1).(1:y-1).(1:z-1)

Khách vãng lai đã xóa
Nguyễn Quỳnh Trang
Xem chi tiết
Youshida Namiko
23 tháng 3 2017 lúc 20:13

Do x + y + z = 4  suy ra  z = 4 - y -x

Ta có x + y >= 4xy -x^2y - yx^2

Trần Nguyễn Khánh Linh
Xem chi tiết
IS
15 tháng 4 2020 lúc 19:58

Ta có

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)

\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)

\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)

\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)

đặt 

\(\frac{1}{xy+yz+zx}=t\)

\(=>A\ge3t^2-2t\)

mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)

\(=>A\ge-\frac{1}{3}\)(dpcm)

Dấu = xảy ra khi x=y=z=1

Khách vãng lai đã xóa
le anh minh
15 tháng 4 2020 lúc 22:53

tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai 

la 18 tuoi . hoi me bao nhieu tuoi ?

Khách vãng lai đã xóa
Nguyễn Hà Phương
16 tháng 4 2020 lúc 14:20

r5464

Khách vãng lai đã xóa
Phạm Tuấn Kiệt
Xem chi tiết
TRAN XUAN TUNG
2 tháng 12 2019 lúc 20:32

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 23:38

Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa

dinh huong
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2021 lúc 17:53

Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)

Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)

Thật vậy, ta có:

\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)

\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)

Cris devil gamer
Xem chi tiết
ghdoes
Xem chi tiết