cho tam giác abc có sinA = 4/5, sinB=8/17. tính cos C
cho tam giác abc. cmr sin^3a*cos(b-c)+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
cho tam giác abc. cmr sin^3a*cos(b-c0+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác abc . Xét dấu các biểu thức sau:
a, A=sinA + sinB + sin C
b, B = SinA . SinB. Sin C
c, C=sin(\(\alpha+\frac{2\pi}{5}\))
d, D=cos ( \(\alpha-\frac{3\pi}{8}\))
Giúp em với ạ. !!
\(0< A;B;C< 180^0\Rightarrow\left\{{}\begin{matrix}sinA>0\\sinB>0\\sinC>0\end{matrix}\right.\)
\(\Rightarrow A=sinA+sinB+sinC>0\)
\(B=sinA.sinB.sinC>0\)
Riêng 2 câu c;d đâu biết \(\alpha\) là góc nào mà xét dấu?
Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
cho tam giác abc sao cho AB=c AC=b BC=a
a) a/sinA=b/sinB=c/sinC
b) cm căn(a*sinA)+ căn(b*sinB)+ căn(c*sinC)=căn[(a+b+c)(sinA+sinB+sinC)]
cho tam giác ABC, chứng minh rằng: \(sinA+sinB-sinC=4.sin\frac{A}{2}.sin\frac{B}{2}.cos\frac{C}{2}\)
\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)
Cho tam giác ABC có sinA+sinB= cosA+cosB. Chứng minh rằng tam giác ABC vuông.
1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90
Bài toán 8. Cho tam giác ABC nhọn có BC =a,CA=b,AB= c trong đó b—c=a/k;(k>1). Gọi ha,hb,hc lần lượt là độ dài các đường cao hạ từ A,B,C. Chứng minh rằng: 1. 1/ha=k(1/Hb-1/hc) 2. a/sinA=b/sinB=c/sinC và sinA=k(sinB-sinC)