\(0< A;B;C< 180^0\Rightarrow\left\{{}\begin{matrix}sinA>0\\sinB>0\\sinC>0\end{matrix}\right.\)
\(\Rightarrow A=sinA+sinB+sinC>0\)
\(B=sinA.sinB.sinC>0\)
Riêng 2 câu c;d đâu biết \(\alpha\) là góc nào mà xét dấu?
\(0< A;B;C< 180^0\Rightarrow\left\{{}\begin{matrix}sinA>0\\sinB>0\\sinC>0\end{matrix}\right.\)
\(\Rightarrow A=sinA+sinB+sinC>0\)
\(B=sinA.sinB.sinC>0\)
Riêng 2 câu c;d đâu biết \(\alpha\) là góc nào mà xét dấu?
Cho \(\alpha\in\left(\frac{\Pi}{2};\Pi\right)\) và \(sin\alpha=\frac{3}{5}\). Tính \(A=\frac{sin\left(\frac{7\Pi}{2}-\alpha\right)}{sin\left(\frac{\Pi}{4}+\alpha\right)-cos\alpha}\)
Cho tan2α = 2 và π < α < \(\frac{3\pi}{2}\). Biết giá trị của biểu thức M= \(\frac{cos(\alpha+\frac{\pi}{3})+cos(\alpha-\frac{\pi}{3})}{tan(\frac{\pi}{2}-\alpha)+tan(\frac{\pi+\alpha}{2}}=\frac{a}{\sqrt{b}}\) với a, b là các số nguyên. Khi đó, giá trị của biểu thức T = 2a + b là ?
chứng minh các biểu thức sau không phụ thuộc vào α
A=\(\dfrac{\sin^4\alpha+\cos^4\alpha-1}{\sin^6\alpha+\cos^6\alpha+3\cos^4\alpha-1}\)
B=\(\cot^230\left(\sin^8\alpha-\cos^8\alpha\right)+4\cos60\left(\cos^6\alpha-\sin^6\alpha\right)-\sin^6\left(90-\alpha\right)\left(\tan^2-1\right)^3\)
Cho tanα = 3, 90 < α < 180. Tính giá trị biểu thức
A= \(\frac{sin\alpha+sin^2\alpha.\text{cos}\alpha+\text{cos}^3\alpha}{sin^3\alpha-sin\alpha.\text{cos}^2\alpha-\text{cos}^3\alpha}\)
Cho \(\tan\alpha\) =2. Giá trị biểu thức : \(\frac{4.\sin^2\alpha+3.\cos\alpha.\sin\alpha}{5.\sin^2\alpha-2.\cos^2\alpha}\)=?
Tính giá trị biểu thức sau: (giúp mình vớiiii)
\(C=\dfrac{2\sin^3\alpha-3\cos^2\alpha\sin\alpha}{\cos\alpha\sin^2\alpha-2\cos\alpha}\)
Tính \(\sin^4\alpha-\cos^4\alpha\) .Biết sina +cos a=m
Rút gọn các biểu thức sau:
A= \(\dfrac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}-cos^2\alpha\)
B= \(\sqrt{sin^4\alpha+6cos^2\alpha+3cos^4\alpha}+\sqrt{cos^4\alpha+6sin^2\alpha+3sin^4\alpha}\)
cho tanx = -1. tính giá trị biểu thức P = \(\frac{sinx+2cosx}{cosx+2sinx}\)
Cho tanx \(\sqrt{2}\). Tính B = \(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
Cho \(sinx+cosx=\frac{1}{5}\) Tính P = | sinx - cosx |