Chứng tỏ :f(x)=2x^2-2x+1 vô nghiệm
Cho đa thức F(x) = 2x- 4
a, Tìm nghiệm của F(x)
b, Chứng tỏ đa thức G(x) \(=F\left(x\right)+x^2-x+6\) vô nghiệm
\(a.\)
\(f\left(x\right)=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow x=2\)
\(b.\)
\(g\left(x\right)=2x-4+x^2-x+6\)
\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
PTVN
Chứng tỏ phương trình 2x + 5 = 4(x – 1) – 2(x – 3) vô nghiệm.
Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm.
chứng tỏ đa thức M(x)=x^4+2x^3+4x^2-1 vô nghiệm
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(x + 1) = 3 + 2x
Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1
Vậy phương trình vô nghiệm.
Chứng tỏ các pt sau vô nghiệm
\(x^2+2x+2=0\)
\(x^2+2x+2=0\\ \Leftrightarrow\left(x^2+2x+1\right)+1=0\\ \Leftrightarrow\left(x+1\right)^2+1=0\)
VÌ \(\left(x+1\right)^2\ge0\forall x;1>0\Rightarrow\left(x+1\right)^2+1>0\)
Vậy pt vô nghiệm
Chứng tỏ phương trình 2x – 3 = 2(x – 3) vô nghiệm
Ta có:
2x – 3 = 2(x – 3)
⇔ 2x – 3 = 2x – 6
⇔ 2x - 2x = 3 – 6
⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm
A(x)= 2x2 +1. Chứng tỏ đa thức A(x) vô nghiệm
Vì \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
Vậy đa thức A(x) vô nghiệm
ta có A(x)=2x2 + 1
vì: 2x2 lớn hơn hoặc bằng 0
1 lớn hơn 0
suy ra: 2x2+1 lớn hơn 0
vậy đa thức A(x) không có nghiệm
x2 lớn hơn hoặc bằng 0
=>2x2 lớn hơn hoặc bằng 0
=>2x2+1 lớn hơn 0
=>A(x) ko có nghiệm nha mấy ba
chứng tỏ rằng các phương trình sau đây vô nghiệm :
a)2(x+1)=2x-1 b)x2+4x+5=0
c)4x2+2x+1=0 d)x2-x+1=0
a) 2(x+1)=2x-1
<=> 2x+2=2x-1
<=> 2x+2-2x+1=0
<=>1=0
=>Pt vô nghiệm
Chứng tỏ x2 + 2x + 2 vô nghiệm
Cho đa thức: \(x^2+2x+2=0\)
\(=x.x+x+x+2=0\)
\(=x\left(x+1\right)+1\left(x+1\right)-1+2=0\)
\(=\left(x+1\right)^2+1=0\)
\(=\left(x+1\right)^2=-1\)( Vô lí) Vì bất kì số nguyên nào khi lũy thừa chẵn cũng là mộ số nguyên không âm.
Vậy đa thức trên không có nghiệm (Vô nghiệm)