Tìm nghiệm của đa thức sau :
\(A\left(x\right)=\left(x-2x^2\right)\left(15x^2+7\right)\)
Tìm nghiệm đa thức sau :
C(x) = \(\left(x-1\right)^2-\frac{2}{3}\left(x-1\right)\)
\(C\left(x\right)=\left(x-1\right)\left(x-1\right)-\frac{2}{3}\left(x-1\right)=\left(x-1\right)\left(x-1-\frac{2}{3}\right)=\left(x-1\right)\left(x-\frac{5}{3}\right)\)
Nghiệm của đa thức là: 1; 5/3
Tìm nghiệm các đa thức sau :
a) \(H\left(x\right)=3x^2+2x+2012\)
b) \(D\left(x\right)=x^2+4x+4\)
c) \(F\left(x\right)=x^3-2x^2-2x+4\)
a) \(H\left(x\right)=3x^2+2x+2012=3\left(x^2+\frac{2}{3}x+\frac{2012}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{2012}{3}\right)\)
\(=3\left[\left(x+\frac{1}{3}\right)^2+\frac{6035}{9}\right]=3\left(x+\frac{1}{3}\right)^2+\frac{6035}{3}\ge\frac{6035}{3}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(D\left(x\right)=x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Nghiệm của đa thức là -2
c)\(F\left(x\right)=x^3-2x^2-2x+4=0\)
\(\Leftrightarrow x^2\left(x-2\right)-2\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-2=0\left(1\right)\end{cases}}\).Xét đa thức (1): \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy...
a, Vô nghiệm
b, Nghiệm là x = -2
Học tốt
tìm giá trị của m sao cho phương trình:
\(12-2\left(1-x\right)^2=4\left(x-m\right)-\left(x-3\right)\left(2x+5\right)\) có nghiệm x=3
Thay : \(x=3\) vào phương trình :
\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)
\(\Leftrightarrow12-8=12-4m\)
\(\Leftrightarrow4m=8\)
\(\Leftrightarrow m=2\)
thay x=3 vào pt ta được
\(12-2\left(2-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-2\left(4-12+9\right)=12-4m\)
\(12-8+24-18-12=-4m\)
\(-2=-4m=>m=\dfrac{1}{2}\)
vậy để pt có nghiệm x=3 thì m=\(\dfrac{1}{2}\)
từ nãy mk ghi đề bàu bị sai nhé thông cảm
sửa lại thay x=3 vào pt ta được
\(12-2\left(1-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-8=12-4m\)
\(-8=-4m=>m=2\)
Bài 3: Khi chia đa thức \(P\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Câu 1. Cho hai đa thức :
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x.\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b) Tính P(x) + Q(x) và P(x) - Q(x)
c) Chứng tỏ rằng x=0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x).
Câu 2. Cho đa thức:
\(M\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3.\)
a) Sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến.
b) Tính M(1) và M(-1).
c) Chứng tỏ rằng đa thức trên không có nghiệm.
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Bài 3: Khi chia đa thức \(P=x^{81}+ax^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ax^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
Cho phân thức C=\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a, Tìm điều kiện của x để P xác định
b, Tìm giá trị của x để phân thức bằng 1
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`
Cho đa thức \(P\left(x\right)=5x^3-7x^2+2x+m\)( m là hằng số )
a) Tìm m, biết P(x) chia hết cho đa thức x-2
b) Với m vừa tìm, hãy xác minh các hệ số a,b,c của đa thức \(Q\left(x\right)=x^3+ax^2+bx+c\). Biết rằng khi chia đa thức P(x) cho đa thức Q(x) được đa thức dư là \(R\left(x\right)=-12x^2-8x-31\)