Giai phương trình X-1 / 2+X-1 / 3+ X-1/ 2016=0
Giai phương trình:
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}=0\)0
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)
Giai phương trình\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{1-x^2}=0\)
ĐKXĐ:\(x\ne\pm1\)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{1-x^2}=0\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+3x-2}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{x^2+2x+1-x^2+2x-1-x^2-3x+2}{\left(x+1\right)\left(x-1\right)}=0\\ \Rightarrow-x^2+x+2=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x^2-2x\right)+\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-\left[\left(x-1\right)\left(x-1\right)\right]-\left(x^2+3x-2\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2-\left(x^2+3x-2\right)=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-x^2-3x+2=0\)
\(\Leftrightarrow-x^2-x+2=0\)
\(\Leftrightarrow-x^2+x-2x+2=0\)
\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{1-x^2}=0\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\dfrac{-\left(x+1\right)}{1-x}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{\left(1-x\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{-\left(x+1\right)^2}{\left(1-x\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(1-x\right)\left(x+1\right)}+\dfrac{x^2+3x-2}{\left(1-x\right)\left(x+1\right)}=0\)
\(\Rightarrow-x^2-2x-1+x^2-2x+1+x^2+3x-2=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=2\) (nhận) hay \(x=-1\) (loại).
-Vậy \(S=\left\{2\right\}\)
Giai phương trình
a)x(x-1)(x+1)(x+2)=0
b)(x-1?)^4+(x-2)^4=0
Bài làm:
a) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-2;-1;0;1\right\}\)
b) Nhận thấy \(\left(x-1\right)^4+\left(x-2\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^4=-\left(x-2\right)^4\)
Mà \(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\left(\forall x\right)}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^4=0\\-\left(x-2\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\) (vô lý)
=> không tồn tại x thỏa mãn PT
a) x( x - 1 )( x + 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\), \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\), \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
b) ( x - 1 )4 + ( x - 2 )4 = 0
<=> ( x - 1 )4 = -( x - 2 )4
\(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\forall}x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\)( mâu thuẫn )
=> Phương trình vô nghiệm
a,\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\\x+2=0\end{cases};x=0}\Leftrightarrow\hept{\begin{cases}x=1\\x=-1\\x=-2\end{cases};x=0}\)
b, \(\left(x-1\right)^4+\left(x-2\right)^4=0\)
Ta có : \(\left(x-1\right)^4\ge0;\left(x-2\right)^4\ge0\)
\(< =>\left(x-1\right)^4+\left(x-2\right)^4\ge0\)
Dấu = xảy ra khi \(< =>\hept{\begin{cases}x=1\\x=2\end{cases}}\)(vô lý)
Giai phương trình :
a)\(\dfrac{2x-1}{3}-x=\dfrac{x+3}{4}+2\)
b)\(x^2-4+\left(x-9\right)\left(x-2\right)=0\)
c)\(\dfrac{x-1}{x-3}-\dfrac{1}{x+3}=\dfrac{3x+3}{x^2-9}\)
a: =>4(2x-1)-12x=3(x+3)+24
=>8x-4-12x=3x+9+24
=>-4x-4=3x+33
=>-7x=37
=>x=-37/7
b: =>(x-2)(x+2+x-9)=0
=>(2x-7)(x-2)=0
=>x=2 hoặc x=7/2
c: =>(x-1)(x+3)-x+3=3x+3
=>x^2+2x-3-x+3=3x+3
=>x^2+x-3x-3=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>x=-1
Giải phương trình:
x+1/2018 + x+2/2017 + x+3/2016 + x+4/2015 + x+2043/6 =0
Giai cac bất phương trình:
a) (x-3)(x-2)<0
b) (x+3)(x+4)(x2+2)≥≥ 0
c) x−1x−2x−1x−2 ≥≥0
d)x+32−xx+32−x≥≥ 0
e) (x-3)(x-2)(x+1)<0
g) 2x−12x−1<0
k) x2 +3x+2>0
m) x2+1<0
Bài 2 ) Giai phương trình
a)/x-1/=-3
b) /2x+1/=0
c)/3-2x/=4
d)/x+1/+3x=4
e) /x+1-4x/=5
g) /x-1/+/x-3/=2
k)/x-1/+/x-2/+/x-3/=2
Cho f(x)=\(\dfrac{x-1}{2}\) cos2x. Giai phương trình f(x).(x-1)f'(x)=0
Giai phương trình:
\(\sqrt{x+6}+\sqrt{x-3}-\sqrt{x+1}-\sqrt{x-2}=0\)
DỂ QUÁ!!!!!!!!!!!!!!!!!!!!!!!!
tui hk biết làm
Giải phương trình:
a,2-x/2016-1=1-x/2017-x/2018
b,x-19/1999+x-23/1995+x+82/700=5
c,x^3-3*x^2+4=0