chứng tỏ đa thức sau vô nghiệm : x^100 - x^79 +x^31 +1
Chứng tỏ đa thức sau vô nghiệm (x-5)^2+1
Vì \(\left(x-5\right)^2\) \(\ge0\) nên \(\left(x-5\right)^2+1\ge1\)
Vậy đa thức trên vô nghiệm.
Mình chỉ trả lời: vì tại x=a bất kì đều có giá trị khác 0 nên (x-5)^2+1 vô nghiệm
Chứng tỏ đa thức (x-1)^2 +/x-2/ vô nghiệm
(x-1)^2 +/x-2/ =0
=>|x-2|+x2-2x+1=0
=>đa thức vô nghiệm
ta có (x-2)<(x-1)
mà \(\left(x-1\right)^2\) \(\ge\) \(0\)
\(\left|x-2\right|\ge0\)
do x-2<x-1
nên hoặc \(\left(x-1\right)^2>0\) và \(\left|x-2\right|>0\)
hoặc \(\left(x-1\right)^2=0\) và |x-2| >0
hoặc \(\left(x-1\right)^2>0\) và | x-2|=0
nên (x-1)^2 +/x-2/ \(\ne\) 0
vậy đa thức trên vô nghiệm
mk cũng ko bít đúng hay sai lun à. ko đúng đừng có chửi nha, mk làm theo suy nghĩ của mk thui
Ê! Alaude ấy , chả hiểu gì , biến đổi thế thì đã có -2x>0 đâu
chứng tỏ các đa thức sau vô nghiệm
a)4x^2 -10x + 9
b)-1 +x -x^2
a) Ta có : \(4x^2-10x+9=0\)
\(\Rightarrow\left(2x\right)^2-2.2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{2}=0\)
\(\Rightarrow\left(2x-\frac{5}{2}\right)^2+\frac{11}{2}=0\)(vô lý)
\(\Rightarrow4x^2-10+9\)vô nghiệm(đpcm)
b) Ta có: \(-1+x-x^2=0\)
\(\Rightarrow\left(-1+x-x^2\right).\left(-1\right)=0\)
\(\Rightarrow x^2-x+1=0\)
\(\Rightarrow x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)
\(\Rightarrow-1+x-x^2\) vô nghiệm(đpcm)
chứng tỏ đa thức M(x)=x^4+2x^3+4x^2-1 vô nghiệm
cho đa thức : h(x) = x^4 + 1/2x^2 + 2012 . chứng tỏ h(x) vô nghiệm
CTR đa thứa : 3x^2010 + x^1002+ 1 vô nghiệm
CTR đa Thức : M(x)= x^2 + 2x + 2 vô nghiệm
CTR đa thức : M(x) = x^2 + 2x + 1 chỉ có 1 nghiệm duy nhất tìm nghiệm duy nhất đó
CMR đa thức M(x) = x^2 - x + 5 không có nghiệm nguyên
Cho đa thức F(x) = 2x- 4
a, Tìm nghiệm của F(x)
b, Chứng tỏ đa thức G(x) \(=F\left(x\right)+x^2-x+6\) vô nghiệm
\(a.\)
\(f\left(x\right)=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow x=2\)
\(b.\)
\(g\left(x\right)=2x-4+x^2-x+6\)
\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
PTVN
Chứng tỏ rằng đa thức sau vô nghiệm:
a) P(x) =2x^6 +7
cũng đơn giản thôi
\(x^6\ge0\Leftrightarrow2x^6\ge0\Leftrightarrow P\left(x\right)=2x^6+7\ge7>0\) => đa thức P(x) vô nghiệm
Chứng tỏ rằng đa thức sau vô nghiệm.
a) f (x) = x2( x2 +1) + x2 ( x +3 ) + 3x + 3
Ta có \(f\left(x\right)=x^4+x^3+4x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\left(x+\frac{2}{5}\right)^2+\frac{12}{5}>0\) với mọi \(x\inℝ\)
Vậy đa thức trên vô nghiệm
A(x)= 2x2 +1. Chứng tỏ đa thức A(x) vô nghiệm
Vì \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
Vậy đa thức A(x) vô nghiệm
ta có A(x)=2x2 + 1
vì: 2x2 lớn hơn hoặc bằng 0
1 lớn hơn 0
suy ra: 2x2+1 lớn hơn 0
vậy đa thức A(x) không có nghiệm
x2 lớn hơn hoặc bằng 0
=>2x2 lớn hơn hoặc bằng 0
=>2x2+1 lớn hơn 0
=>A(x) ko có nghiệm nha mấy ba