Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Đức Anh
Xem chi tiết
VRCT_Hoàng Nhi_BGS
3 tháng 4 2017 lúc 0:08

xin lỗi mk mới lớp 7 nhưng bn hãy vận dụng ng~ j bn đã học bn sẽ làm được..

-----chúc bn học tốt-------

Đặng Hồng Đăng
3 tháng 4 2017 lúc 4:48

VRCT_Hoàng Nhi_BGS như trẻ con mà tỏ vẻ người lớn

Lại Đức Anh
3 tháng 4 2017 lúc 9:38

Khổ quá. Ko lẽ mình xài đạo hàm cấp 2 cho hàm 2 biến số thì có nghìn bài như thế này mình vẫn làm đc thôi nhưng cái mình cần là cách giải của cấp trung học nhé :))

Ngoc Nhi Tran
Xem chi tiết
Hoàng
Xem chi tiết
Incursion_03
Xem chi tiết
quang phan duy
2 tháng 7 2019 lúc 16:28

ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi

Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)

\(\Rightarrow A\le xyz=1\)

VẬY MAX A=1 TẠI x=y=z=1

Incursion_03
2 tháng 7 2019 lúc 17:12

quang phan duy Sol hay đấy =) hay hơn cách tôi rồi

hanvu
Xem chi tiết
Trần Phúc Khang
13 tháng 7 2019 lúc 15:35

A

Áp dụng BĐT cosi ta có 

\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)

\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)

Khi đó 

\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)

MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)

Trần Phúc Khang
13 tháng 7 2019 lúc 15:42

B

Áp dụng BĐT cosi ta có :

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)

Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)

=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)

\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z

Phan PT
Xem chi tiết
Akai Haruma
29 tháng 3 2021 lúc 23:42

Lời giải:

Đặt $xy=t$

Áp dụng BĐT AM_GM:

$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$

Ta có:

$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$

$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$

$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$

$=x^4y^4+2x^2y^2-48xy+145$

$=t^4+2t^2-48t+145$

$=t(t^3+2t-48)+145$

Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$

$\Rightarrow P\leq 145$

Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 18:45

Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:

\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)

\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)

Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)

Cộng vế:

\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)

Thiều Thị Hương Trà
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 18:38

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai