Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đấng ys

cho x,y,z thuc duong thoa man \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)

tim Max\(A=x^2+2y\)

Nguyễn Việt Lâm
18 tháng 9 2021 lúc 18:45

Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:

\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)

\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)

Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)

Cộng vế:

\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)


Các câu hỏi tương tự
Đức Anh Gamer
Xem chi tiết
Pham Tien Dat
Xem chi tiết
đấng ys
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Yuri
Xem chi tiết
Đặng Quang Vinh
Xem chi tiết
đấng ys
Xem chi tiết
títtt
Xem chi tiết
Dương Nguyễn
Xem chi tiết