Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đấng ys

tìm tất cả các giá trị nguyên của m để hệ pt có  nghiệm

\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\\\sqrt{2y}+\sqrt{3-x}=m\end{matrix}\right.\)

missing you =
13 tháng 1 2022 lúc 21:51

\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\left(1\right)\\\sqrt{2y}+\sqrt{3-x}=m\left(2\right)\end{matrix}\right.\) \(\left(0\le x,y\le3\right)\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Leftrightarrow\dfrac{2x-2y}{\sqrt{2x}+\sqrt{2y}}+\dfrac{3-y-3+x}{\sqrt{3-y}+\sqrt{3-x}}=0\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(3\right)\\\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\left(1\right)và\left(3\right)\Rightarrow\sqrt{2x}+\sqrt{3-x}=m\)

\(m^2=x+3+2\sqrt{2x\left(3-x\right)}\ge3\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{3}\\m\le-\sqrt{3}\end{matrix}\right.\)\(\left(4\right)\)

\(m\le\sqrt{3\left(x+3-x\right)}=3\left(5\right)\)

\(\left(4\right)\left(5\right)\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

Nguyễn Việt Lâm
13 tháng 1 2022 lúc 21:42

Trừ vế cho vế:

\(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Rightarrow\dfrac{\sqrt{2}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=y\)

Thế vào pt đầu:

\(\sqrt{2x}+\sqrt{3-x}=m\)

Ta có: \(\sqrt{2.x}+\sqrt{1.\left(3-x\right)}\le\sqrt{\left(2+1\right)\left(x+3-x\right)}=3\)

\(\sqrt{2x}+\sqrt{3-x}=\sqrt{x}+\sqrt{3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{x+3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{3}\)

\(\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)


Các câu hỏi tương tự
Pham Tien Dat
Xem chi tiết
Đặng Quang Vinh
Xem chi tiết
Yuri
Xem chi tiết
Sennn
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
đấng ys
Xem chi tiết
đấng ys
Xem chi tiết
ysssdr
Xem chi tiết
Dương Nguyễn
Xem chi tiết