tìm giá trị nhỏ nhất của C=7/4-2019/3|x-3y|+|2x-2|+2020
tìm giá trị nhỏ nhất
A=3(x-4)4
B=5+2(x-2019)2020
C=5+2018(2020-x)2
D=(x-1)2020+(y-x)-1
E=2(x-1)2+3(2x-y)4-2
A=3(x-4)4
Vì (x-4)4 ≥0
=>3(x-4)4 ≥0
Vậy MinA=0
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
Tìm giá trị nhỏ nhất của các biểu thức
A = | 4x-3 | + | 5y+7,5 | + 17,5
B = | x-2 | + | x-6 | + 2017
C = (2x+1)^2020 - 2019
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
Tìm giá trị nhỏ nhất của biểu thức và giá trị tương ứng của x,y
\(A=\left(3x+4\right)^{2018}+\left|3y+5\right|+2018^0\\\)
\(B=2\left|x-100\right|+\left|2x+1\right|\)
\(C=\left|x-y-5\right|+2018.\left(y-3\right)^{2020}+2019\)
\(D=\left|2x+2018\right|+2\left|x-1\right|\)
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
7/3 -|x|
|2x-7|+9
5-|3x+1|
2018+x^2
(x-9)^2 +2019
2020-(3x+5)^2
|x-7|+(3x+1)^2 +5
Tìm giá trị nhỏ nhất: P= ( | x-1|+2)2 + |y-z|+2020
Tìm giá trị lớn nhất: A= |x-2019|-|x-2020|
giúp em với ạ
tìm giá trị nhỏ nhất của biểu thức C=|x-2019|+2020 / |x-2019|+2021
tìm giá trị tuyệt đối nhỏ nhất của biểu thức
A= /x-2019 / +/2020 -x/
B= (/x-3 / + 2 ) 2 + / y + 3 / + 2007
C= /2x - 3 / + 1/2 / 4x - 1 /
Tìm giá trị nhỏ nhất của P=|x-2019| + 2020 / |x-2019| + 2021
Theo bđt cosi
\(P=\left|x-2019\right|+\dfrac{2020}{\left|x-2019\right|}+2021\ge2\sqrt{\dfrac{\left|x-2019\right|.2020}{\left|x-2019\right|}}+2021=4\sqrt{505}+2021\)
Dấu ''='' xảy ra khi \(x-2019=2020\Leftrightarrow x=4039\)
Tìm giá trị lớn nhất của biểu thức:
a) A= 4- |2x + 5| b) B= \(\dfrac{2019}{\left|x-1\right|+5}\) c) C= 4- |x -2| - |3y + 6|
a, Ta có : \(A=4-\left|2x+5\right|\le4\)
Dấu ''='' xảy ra khi x = -5/2
Vậy GTLN A là 4 khi x = -5/2
b, Ta có : \(\left|x-1\right|+5\ge5\)
\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)
Dấu ''='' xảy ra khi x = 1
Vậy GTLN B là 1/5 khi x = 1
c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)
Dấu ''='' xảy ra khi x = 2 ; y = -2
Vậy GTLN C là 4 khi x = 2 ; y = -2
a) Ta có: \(\left|2x+5\right|\ge0\forall x\)
\(\Leftrightarrow4-\left|2x+5\right|\le4\forall x\)
Dấu '=' xảy ra khi \(=-\dfrac{5}{2}\)
b) Ta có: \(\left|x-1\right|+5\ge5\forall x\)
\(\Leftrightarrow\dfrac{2019}{\left|x-1\right|+5}\le\dfrac{2019}{5}\forall x\)
Dấu '=' xảy ra khi x=1
c) Ta có: \(-\left|x-2\right|\le0\forall x\)
\(-\left|3y+6\right|\le0\forall y\)
Do đó: \(-\left|x-2\right|-\left|3y+6\right|+4\le4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-2