Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nàng tiên cá
Xem chi tiết
Anh Aries
Xem chi tiết
Trần Tuệ Như
Xem chi tiết
Lại Anh Bảo
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Xem chi tiết
Nguyễn Linh Chi
17 tháng 7 2020 lúc 7:52

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}+\frac{2b^2-2ca}{2b^2+c^2+a^2}+\frac{2c^2-2ab}{2c^2+a^2+b^2}\right)\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}-1+\frac{2b^2-2ca}{2b^2+c^2+a^2}-1+\frac{2c^2-2ab}{2c^2+a^2+b^2}-1\right)+\frac{3}{2}\)

\(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\)

NHận xét:

\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\)\(=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Tương tự: \(\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}\le\text{​​}\text{​​}\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}\)

\(\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le\text{​​}\text{​​}\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\)

=> \(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)

=> \(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\ge-\frac{1}{2}.3+\frac{3}{2}=0\)

=> \(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\ge0\)

Dấu "=" xảy ra <=> a = b = c 

Khách vãng lai đã xóa
Nguyễn Thị Đoan Trang
Xem chi tiết
Once in a million
Xem chi tiết
An Vũ
Xem chi tiết