1. tính x.y và x:y biết rằng x,y thỏa mãn các đẳng thức sau:
\(4\left(a^4-1\right)x=5\left(a-1\right),\left(5a^4-5a^2+5\right)y=4a^6+4\)
trong đó a là hằng số và a≠\(\pm\)1
2. a,\(\frac{a^2+ab-2b^2}{a^4-b^4}.x=\frac{a+b}{a^3+a^2b+ab^2+b^3}\)với a, b là hằng số và a≠\(\pm\)b, a≠-2b
b, \(\frac{5a^2-10ab+5b^2}{2a^2-2ab+2b^2}:x=\frac{8a-8b}{10a^3+10b^3}\)với a,b là hằng số, b\(_{\ne}\)0 và a\(\ne\pm\)b
3. rút gọn A=\(\frac{5^2-1}{3^2-1}:\frac{9^2-1}{7^2-1}:\frac{13^2-1}{11^2-1}...\frac{55^2-1}{53^2-1}\)
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1
Cho a,b,c là các số thực dương. CMR:
\(\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2a+^{ }}+\frac{2\left(c+a-b\right)}{2b^2+\left(c+a\right)^2}+\frac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\)\(\ge1\)
Dùng Bunhiacopxki dạng phân thức
Cho a,b,c là các số thực dương. CMR
\(\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}+\frac{2\left(c+a-b\right)^2}{2b^2+\left(c+a\right)^2}+\frac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\) ≥ 1
Cho a,b,c là các số thực dương thỏa mãn:ab+bc+ca=2abc.CMR:\(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\)≥\(\frac{1}{2}\)
1,cho các sô thực a,b,c thỏa mãn abc(a+b+c)=1. Tính giá trị của biểu thức Q=\(\frac{c^2\left(a+b\right)^2\left(1+a^2b^2\right)}{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}\)
Cho a,b,c là các số thực không âm thỏa mãn:a+2b+3c=4.CMR:\(\left(a^2b+b^2c+c^2a+abc\right)\left(ab^2+bc^2+ca^2+abc\right)\)≤8
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho a,b,c là độ dài ba cạnh của một tam giác.CMR:
\(a)a^4+b^4+c^4< 2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b)\(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
c)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
d)\(ab\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)