Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mệ quá
Xem chi tiết
Vũ Khánh Huyền
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trương Huy Hoàng
10 tháng 2 2021 lúc 15:31

x2 - xy + 3x - y = 5

\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5

\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7

\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7

\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7

Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z

Xét các TH:

TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)

TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)

TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)

TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)

Vậy ...

Chúc bn học tốt!

Big City Boy
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
nguyễn quỳnh lưu
Xem chi tiết
alibaba nguyễn
9 tháng 11 2017 lúc 9:16

\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)

\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)

\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)

Để phương trình theo nghiệm x có nghiệm thì:

\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)

\(\Leftrightarrow0\le y\le5\)

Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.

Phạm Cao Sơn
Xem chi tiết
Louis phan
Xem chi tiết