Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Hân
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 15:12

Đặt \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{60^2}\)

\(A< \dfrac{1}{3^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{59.60}\)

\(A< \dfrac{1}{3^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)

\(A< \dfrac{1}{3^2}+\dfrac{1}{3}-\dfrac{1}{60}\)

\(A< \dfrac{4}{9}-\dfrac{1}{60}< \dfrac{4}{9}\) (đpcm)

minqưerty6
Xem chi tiết
Phong
21 tháng 10 2023 lúc 11:46

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

viêt phạm
Xem chi tiết
Le Minh Huy
7 tháng 7 2021 lúc 21:30

Hình như đề sai r

1/2^3 = 1/8 > 1/9

viêt phạm
Xem chi tiết
phan van co 4
Xem chi tiết
Hoàng Nguyễn Xuân Dương
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

jimmydozen
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Nguyen Quynh Tram
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

nem nguyễn
Xem chi tiết
 ๖ۣۜмèoღ๖ۣۜSu♕
Xem chi tiết
Nguyễn Khánh Ngoc
Xem chi tiết

Đặt \(A=\frac15+\frac{2}{5^2}+\cdots+\frac{2016}{5^{2016}}\)

=>\(5A=1+\frac25+\cdots+\frac{2016}{5^{2015}}\)

=>\(5A-A=1+\frac25+\cdots+\frac{2016}{5^{2015}}-\frac15-\frac{2}{5^2}-\cdots-\frac{2016}{5^{2016}}\)

=>\(4A=1+\frac15+\frac{1}{5^2}+\cdots+\frac{1}{5^{2015}}-\frac{2016}{5^{2016}}\)

Đặt \(B=\frac15+\frac{1}{5^2}+\cdots+\frac{1}{5^{2015}}\)

=>\(5B=1+\frac15+\cdots+\frac{1}{5^{2014}}\)

=>\(5B-B=1+\frac15+\cdots+\frac{1}{5^{2014}}-\frac15-\frac{1}{5^2}-\cdots-\frac{1}{5^{2015}}\)

=>\(4B=1-\frac{1}{5^{2015}}=\frac{5^{2015}-1}{5^{2015}}\)

=>\(B=\frac{5^{2015}-1}{4\cdot5^{2015}}\)

TA có: \(4A=1+\frac15+\frac{1}{5^2}+\cdots+\frac{1}{5^{2015}}-\frac{2016}{5^{2016}}\)

\(=1+\frac{5^{2015}-1}{4\cdot5^{2015}}-\frac{2016}{5^{2016}}=1+\frac{5^{2016}-5-8064}{4\cdot5^{2016}}=1+\frac14-\frac{8069}{4\cdot5^{2016}}\)

=>\(4A<1+\frac14=\frac54\)

=>\(A<\frac{5}{16}\)

\(\frac{5}{16}<\frac{5}{15}=\frac13\)

nên \(A<\frac13\) (1)

Ta có: \(4A=1+\frac15+\frac{1}{5^2}+\cdots+\frac{1}{5^{2015}}-\frac{2016}{5^{2016}}\)

=>\(20A=5+1+\frac15+\cdots+\frac{1}{5^{2014}}-\frac{2016}{5^{2015}}\)

=>\(20A-4A=5+1+\frac15+\cdots+\frac{1}{5^{2014}}-\frac{2016}{5^{2015}}-1-\frac15-\frac{1}{5^2}-\cdots-\frac{1}{5^{2015}}-\frac{2016}{5^{2016}}\)

=>\(16A=5-\frac{2017}{5^{2015}}-\frac{2016}{5^{2016}}>5\)

=>\(A>\frac{5}{16}\)


=>\(A>\frac{4}{16}=\frac14\) (2)

Từ (1),(2) suy ra 1/4<A<1/3

Nguyen Dieu Chau
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 11:07

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

Nguyễn Hoàng Minh
20 tháng 12 2021 lúc 11:09

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

ngô lê vũ
20 tháng 12 2021 lúc 11:10

a,Chứng minh rằng A là một lũy thừa của 2

A=4+2^2+2^3+2^4+......+2^20

b,Chứng tỏ A=3^1+3^2+3^3+.....+3^60 chia hết cho 13

 

 

Đinh Xuân Hoàng
Xem chi tiết
robert lewandoski
9 tháng 5 2015 lúc 11:06

Ta có: 1/3^2<1/2.3;1/4^2<1/3.4;........

=>1/3^2+1/4^2+1/5^2+......+1/100^2

< 1/2.3+1/3.4+1/4.5+.....+1/99.100

=1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100

=1/2-1/100

=49/100

Mà 49/100<1/2

Nên 1/3^2+1/4^2+1/5^2+......+1/100^2<1/2

Đ ú n g nha......................