Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mai Thế Vũ
Xem chi tiết
Hoang NGo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 15:42

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

Nguyễn Ngọc Huy Toàn
13 tháng 2 2022 lúc 15:45

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

Lại thế khánh
Xem chi tiết
Kinomoto Sakura
8 tháng 8 2021 lúc 16:17

a) Đường cao BH = CK = a

BC = a/sinα

Kẻ đg cao AD ⇒ BD = DC = a/2sinα

⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα

    AB = AC = AD/sinα = a/2sinαcosα = a/sin2α

b) Dễ dàng có đc S = pr

⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα

S = AB.BC.CA/4R

⇒ R = AB.BC.CA/4S = a/2sin22α.cosα

lưu ly
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 3 2022 lúc 21:08

△AKC∼△AHB (g-g) \(\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}=\dfrac{AC-CK}{AB-BH}=1\)

\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A.

\(AB\ge BH\Rightarrow AB+CK\ge BH+CK\Rightarrow AC+BH\ge BH+CK\Rightarrow AC\ge CK\)-Dấu bằng xảy ra khi và chỉ khi \(A\equiv H\Leftrightarrow\)△ABC vuông tại A.

Nguyễn Vũ Hà Anh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 1 2022 lúc 11:48

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)

hoàng anh minh
Xem chi tiết
Nguyễn Việt Hoàng
20 tháng 8 2020 lúc 15:06

A B C H

Ta có : BH + CH = 64 + 81 = 145 (cm) 

Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :

+) \(AB^2=BH.CH\)

\(\Leftrightarrow AB^2=64.145=9280\)

\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)

+) \(AC^2=BC.CH\)

\(\Leftrightarrow AC^2=81.145=11745\)

\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)

Ta có : 

\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)

\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )

Xét tam giác ABC có :

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)

Vậy .......

Khách vãng lai đã xóa
truc phan
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 16:06

Ta có : BC = BH + CH = 64 + 81 = 145 (cm)

=> \(AB^2=HB.BC=64.145\Rightarrow AB=\sqrt{64.145}=8\sqrt{145}\left(cm\right)\)

\(AC=\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\) (cm)

\(AH=\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)

Ta có \(sinB=\frac{AH}{AB}=\frac{72}{8\sqrt{145}}\Rightarrow\widehat{B}\approx48^o21'59.26''\)

\(sinC=\frac{AH}{AC}=\frac{72}{9\sqrt{145}}\Rightarrow\widehat{C}\approx41^o38'0.74''\)

Nguyễn Công Hoàng
Xem chi tiết
Akai Haruma
28 tháng 10 2023 lúc 17:20

Lời giải:
$BC=BH+HC=61+84=145$ (cm) 

Áp dụng hệ thức lượng trong tam giác vuông: 

$AH^2=BH.CH=61.84=5124$ 

Áp dụng định lý Pitago cho tam giác vuông $ABH, ACH$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{5124+61^2}\approx 94$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{5124+84^2}\approx 110,4$ (cm)

$\cos B =\frac{AB}{BC}=\frac{94}{145}\Rightarrow \widehat{B}\approx 50^0$

$\widehat{C}=90^0-\widehat{B}\approx 90^0-50^0=40^0$

Akai Haruma
28 tháng 10 2023 lúc 17:20

Hình vẽ:

loading...