cho tam giác ABC và các đường cao BH ; CK chứng minh rằng
a) tam giác BHA ~ tam giác CKA
Cho tam giác ABC nhọn, các đường cao BH và CK. Vẽ các đường tròn đường kính AC, AB lần lượt cắt BH và CK tại D và E. Chứng minh tam giác ADE cân
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
Cho tam giác ABC cân tạiA,đường cao BH=a,góc ABC=alpha. a,tính các cặp cạnh và đường cao còn lại. b,tính bán kính đường trong nội tiếp và đường trong ngoại tiếp tam giác abc
a) Đường cao BH = CK = a
BC = a/sinα
Kẻ đg cao AD ⇒ BD = DC = a/2sinα
⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα
AB = AC = AD/sinα = a/2sinαcosα = a/sin2α
b) Dễ dàng có đc S = pr
⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα
S = AB.BC.CA/4R
⇒ R = AB.BC.CA/4S = a/2sin22α.cosα
Cho tam giác ABC có các đường cao BH và CK (H thuộc CA và K thuộc AB). Biết rằng AB+CK=AC+BH. Chứng minh rằng tam giác ABC hoặc là tam giác cân hoặc là tam giác vuông
△AKC∼△AHB (g-g) \(\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}=\dfrac{AC-CK}{AB-BH}=1\)
\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A.
\(AB\ge BH\Rightarrow AB+CK\ge BH+CK\Rightarrow AC+BH\ge BH+CK\Rightarrow AC\ge CK\)-Dấu bằng xảy ra khi và chỉ khi \(A\equiv H\Leftrightarrow\)△ABC vuông tại A.
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC
biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
Cho tam giác ABC vuông tại A,đường cao AH.Biết BH=64cm và CH=81.Tính các cạnh và góc tam giác ABC
Ta có : BH + CH = 64 + 81 = 145 (cm)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :
+) \(AB^2=BH.CH\)
\(\Leftrightarrow AB^2=64.145=9280\)
\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)
+) \(AC^2=BC.CH\)
\(\Leftrightarrow AC^2=81.145=11745\)
\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)
Ta có :
\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)
\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )
Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)
Vậy .......
cho tam giác ABC biết AB=AC. Kẻ đường cao BH và CK.
a) Viết công thức tính diện tích tam giác ABC theo độ dài đường cao BH VÀ CK.
b)tỉ số 2 đường chép xuất phát từ các đỉnh B cà C.
c)so sánh độ dài 2 đường cao BH VÀ CK.
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 64cm và CH = 81cm. Tính các cạnh và góc tam giác ABC
Ta có : BC = BH + CH = 64 + 81 = 145 (cm)
=> \(AB^2=HB.BC=64.145\Rightarrow AB=\sqrt{64.145}=8\sqrt{145}\left(cm\right)\)
\(AC=\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\) (cm)
\(AH=\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)
Ta có \(sinB=\frac{AH}{AB}=\frac{72}{8\sqrt{145}}\Rightarrow\widehat{B}\approx48^o21'59.26''\)
\(sinC=\frac{AH}{AC}=\frac{72}{9\sqrt{145}}\Rightarrow\widehat{C}\approx41^o38'0.74''\)
Lời giải:
$BC=BH+HC=61+84=145$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=61.84=5124$
Áp dụng định lý Pitago cho tam giác vuông $ABH, ACH$:
$AB=\sqrt{AH^2+BH^2}=\sqrt{5124+61^2}\approx 94$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{5124+84^2}\approx 110,4$ (cm)
$\cos B =\frac{AB}{BC}=\frac{94}{145}\Rightarrow \widehat{B}\approx 50^0$
$\widehat{C}=90^0-\widehat{B}\approx 90^0-50^0=40^0$