Chứng minh 1/1^2+1/3^2+1/5^2+......+1/99^2 <5/4
Giúp mk mới nha 😢😢😢🙏🙏🙏🍡🍡🍡
Ai nhanh chóng nhất là 3 tick lun nha
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
Chứng minh rằng:
\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{99^2}< \dfrac{5}{18}\)
a) thu gọn biểu thức sau: a= 5 - 5^2 + 5^3 - 5^4 +...- 5^98 + %^99
b) chứng minh rằng với mọi n thuộc N thì (2^n+1).(2^n+2) đều chia hết cho 3
c) chúng minh: A= 1/1^2 + 1/2^2+ 1/3^2+.....+1/99^2+ 1/100^2 < 1 3/4 (hỗn số)
D =1/2 -1/3+1/4-...-1/99. Chứng minh 1/5<D<2/5
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
cho K = 1/ 4mu 2 + 1/ 5 mũ 2 + . . .+1/99 mũ 2
chứng minh rằng: 1/5 < K < 1/3
Ta thấy :
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
..............
\(\dfrac{1}{99^2}>\dfrac{1}{99.100}\)
\(\Rightarrow\) \(K>\dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}\)
Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Dựa vào công thức ta có :
\(\dfrac{1}{4.5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
.......................
\(\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) \(K>\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow\) \(K>\dfrac{1}{4}-\dfrac{1}{100}\)
\(\Rightarrow K>\dfrac{6}{25}>\dfrac{1}{5}\Rightarrow dpcm\) (1)
Ta có :
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
................
\(\dfrac{1}{99^2}< \dfrac{1}{98.99}\)
Dựa vào công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\) ta có :
\(K< \dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{98.99}\)
\(\Rightarrow\) \(K< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+.......+\dfrac{1}{98}-\dfrac{1}{99}\)
\(\Rightarrow\) \(K< \dfrac{1}{3}-\dfrac{1}{99}\)
Vậy \(K< \dfrac{32}{99}< \dfrac{1}{3}\Rightarrow dpcm\) (2)
(1) ; (2) \(\Rightarrow\) \(\dfrac{1}{5}< K< \dfrac{1}{3}\)
Ai thấy đúng thì ủng hộ nha !!!
Công thức tổng quát: \(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
=>\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}< K< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{98.99}\)
=>\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}< K< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
=>\(\dfrac{1}{4}-\dfrac{1}{100}< K< \dfrac{1}{3}-\dfrac{1}{100}\)
=>\(\dfrac{1}{4}< K< \dfrac{1}{3}\)
=>\(\dfrac{1}{5}< K< \dfrac{1}{3}\left(do\dfrac{1}{4}>\dfrac{1}{5}\right)\)
Chứng minh rằng : 3/1^2×2^2 + 5/2^2×3^2 + 7/3^2×4^2 +....+199/99^2×100^2 < 1