tính tổng S=3/5x7+3/7x9+.............+3/59x61
3/5x7 + 3/7x9 +...+ 3/59x61
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{3}.\left(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}\right)\)
\(\Rightarrow\frac{2}{3}.A=\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{7-5}{5.7}+\frac{9-7}{7.9}+.....+\frac{61-59}{59.61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{1}{5}-\frac{1}{61}\)
\(\Rightarrow\frac{2}{3}.A=\frac{56}{305}\)
\(\Rightarrow A=\frac{56}{305}:\frac{2}{3}\)
\(\Rightarrow A=\frac{56}{305}.\frac{3}{2}\)
\(\Rightarrow A=\frac{84}{305}\)
Vậy \(\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{59.61}=\frac{84}{305}\)
\(\frac{3}{5x7}+\frac{3}{7x9}+...+\frac{3}{59x61}\)
giup minh nhe
\(\frac{3}{5x7}+\frac{3}{7x9}+...+\frac{3}{59x61}\)
\(=\frac{3}{2}\left(\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{59x61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}++...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
Nguyễn Tuấn Minh giải đúng rồi nhé
tính nhanh 6 / 5x7 + 6 / 7x9 + ....... + 6 / 59x61
\(\dfrac{6}{5.7}+\dfrac{6}{7.9}+...+\dfrac{6}{59.61}\)
\(=3\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3.56}{305}\\ =\dfrac{168}{305}\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)=3\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=3\cdot\dfrac{56}{305}=\dfrac{168}{305}\)
a/ 3/5x7 +3/7x9 +....+3/59x61
b/ 1+1/2+1/4+1/8+1/16+....+1/512+1/1024
tính giá trị của biểu thức sau bằng phương pháp hợp lý; 4/5x7+4/7x9+.....+4/59x61
các bạn trả lời giúp mk nhé đúng mk tick cho
Ta có :\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=2\left(\frac{1}{5}-\frac{1}{61}\right)=2.\frac{56}{305}=\frac{112}{305}\)
P/S : Dấu "." là dấu "x"
Bài làm:
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
\(\frac{4}{5\times7}+\frac{4}{7\times9}+.....+\frac{4}{59\times61}\)
\(=\frac{4}{2}\times\left(\frac{2}{5\times7}+\frac{2}{7\times9}+....+\frac{2}{59\times61}\right)\)
\(=2\times\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\times\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2\times\frac{56}{305}\)
\(=\frac{112}{305}\)
Học tốt
tính: S= 3/5x7+ 3/7x9+...+3/2013x2015
bài này dễ mà
C1 đặt 3 ra rồi nhân 2
C2 làm tắt nhân bằng phân số luôn thế thôi
\(S=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2013.2015}\)
\(S=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{2013}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\left(\frac{2}{5}-\frac{2}{2015}\right)\)
\(S=\frac{3}{2}.\frac{804}{2015}\)
\(S=\frac{1206}{2015}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)Tính nhanh:
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
Tính
a. 3/(3x5) + 3/(5x7) + 3/(7x9) +... + 3/(99x101)
b. 5/(3x5) +5/(5x7) +5/(7x9) +...+ 5/(99x101)
917749738461936926399639748776398646491639394748947630373937366
Kết quả của phép tính 3/3x5+3/5x7+3/7x9+...+3/99x101
\(\frac{3}{3\times5}+\frac{3}{5\times7}+\frac{3}{7\times9}+...+\frac{3}{99\times101}\)
\(=\frac{3}{2}\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\right)\)
\(=\frac{3}{2}\times\left(\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+...+\frac{101-99}{99\times101}\right)\)
\(=\frac{3}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{49}{101}\)