tìm \(\overline{abc}\)biết\(\overline{abc}\times\overline{ab,c=3\times\overline{b,c}}+0,8\)
Thay các chữ cái bằng các chữ số thích hợp:
A) \(\overline{3a,b}\times\overline{0,b}=\overline{16,ab}\)
B)\(\overline{a,bc}\times4,1=\overline{15,abc}\)
C)\(\overline{ab,ab}\div\overline{ab}=\overline{ab,a}\)
D)\(\overline{aa,aa}\div\overline{ab,a}=\overline{a,a}\)
Mọi người trả lời, giải thích lời giải dùm em với ạ!!!
thay các chữ a,b,c bằng chữ số không giống nhau thích hợp
\(\overline{ab}\times\overline{cc}\times\overline{abc}=\overline{abcabc}\)
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
Tìm số tự nhiên \(\overline{abc}\), biết:
\(1.001\times\overline{abc}=\overline{1b5.a2c}\)
Gợi ý: Ta có \(1.001\times\overline{abc}=\overline{abc.abc}\).
Có cái gợi ý thì dễ rồi
\(\overline{1b5,a2c}=1,001\times\overline{abc}=\overline{abc,abc}\)
\(\overline{1b5,a2c}=\overline{abc,abc}\)
a=1,c=5,b=2
Đáp số:số abc cần tìm là 125
Tìm số có ba chữ số \(\overline{abc}\), biết rằng \(\overline{ab,c}\)= 3 . \(\overline{b,c}\) + 0,8
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Bài 1: Thay các chữ a, b, c, d bằng các số thích hợp:
\(\overline{ab}\times\overline{cd}=\overline{bbb}\)
Bài 2: Điền các chữ số vào dấu hỏi và vào các chữ sau:
a) \(\overline{abcd}\times\overline{dcba}=\overline{?????000}\)
b) \(????+????=?9997\)
Bài 3: Tìm số tự nhiên biết tổng của nó và các chữ số của nó bằng 1987.
Bài 4: Cho a là số có bốn chữ số, tổng các chữ số của a là b. Tổng các chữ số của b là c. Biết a + b + c = 1989. Tìm a.
Bài 5: Tìm số tự nhiên nhỏ nhất chia hết cho 1987 mà 5 chữ số đầu tiên bên trái của số tự nhiên đó đều là 1.
Bài 6: Tìm các chữ số a, b, c để: \(\overline{abbc}=\overline{ab}\overline{ }\times\overline{ac}\times7\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
Tìm các chữ số a,b,c,d
\(\overline{ab}\times\overline{cdc}=\overline{abab}\)
ab x cdc = abab
=> ab x cdc = ab x 100 + ab
=> ab x cdc = ab x 101 ( 1 )
=> cdc = 101 ( 2 )
=> c = 1 ; d = 0
Cho biết \(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
Tính tổng\(\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}\)