Tìm số nguyên x để A=4x-6/x-2 có giá trị nguyên
Tìm giá trị nguyên của x để mỗi biểu thức sau có giá trị là một số nguyên:
a) A= 2x^3+x^2+4x+5 / 2x+1
b) B= x^3 / 6+x^2 / 2+x^3
Tìm các giá trị nguyên của x để phân thức a có giá trị là số nguyên:
A= x^3-4x^2+4x-10/x-3
Giúp mk nha!
\(A=\frac{x^3-4x^2+4x-10}{x-3}\)( ĐKXĐ : x ≠ 3 )
\(=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)}{x-3}-\frac{7}{x-3}\)
\(=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì x ∈ Z nên ( x2 - x + 1 ) ∈ Z
nên để A ∈ Z thì \(\frac{7}{x-3}\)∈ Z
hay ( x - 3 ) ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
Các giá trị tm ĐKXĐ
Vậy x ∈ { ±4 ; 2 ; 10 } thì A ∈ Z
\(ĐKXĐ:x\ne3\)
\(A=\frac{x^3-4x^2+4x-10}{x-3}=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì \(x\inℤ\)\(\Rightarrow x^2-x+1\inℤ\)
\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x-3}\inℤ\)\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)( thỏa mãn ĐKXĐ )
Vậy \(x\in\left\{-4;2;4;10\right\}\)
Bài1: Cho biểu thức:
A= x^3 - 3x^2 + 4x - 1 / x-3
a) Tìm điều kiện xác định
b) Tìm giá trị nguyên của x để biểu thức có giá trị nguyên.
Bài 2:Cho biểu thức:
P= x^3 - 3x^2 + 6 / x^2 - 3x
a) Tìm điều kiện xác định
b) Tính giá trị của P khi x = 2
c) Tìm giá trị nguyên của x để P nhận giá trị nguyên
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko
Tìm số nguyên x để biểu thức A=\(\frac{4x+2}{x-3}\) có giá trị nguyên
Tìm số nguyên x để A=\(\dfrac{4x+1}{6x-3}\) có giá trị nguyên
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để \(A=\dfrac{4x+1}{6x-3}\) nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { \(\pm1;\pm3;\pm9\) }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | \(\dfrac{2}{3}\) \(\notin\) Z ( loại ) | 2 | \(\dfrac{1}{3}\notin\) Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để \(A=\dfrac{4x+1}{6x-3}\) nguyên
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | Z ( loại ) | 2 | Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để nguyên
nhớ đánh giá nhé >-<
Ta có \(A=\dfrac{4x-1}{6x-3}\) \(\Leftrightarrow\left(6x-3\right)A=4x-1\) \(\Leftrightarrow3A\left(2x-1\right)-2\left(2x-1\right)=1\) \(\Leftrightarrow\left(2x-1\right)\left(3A-2\right)=1\). Ta chỉ có 2 trường hợp là \(\left\{{}\begin{matrix}2x-1=1\\3A-2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\A=1\end{matrix}\right.\) (nhận) hoặc \(\left\{{}\begin{matrix}2x-1=-1\\3A-2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\A=\dfrac{1}{3}\end{matrix}\right.\)(loại).
Vậy để \(A\inℤ\) thì \(x=1\)
tìm các giá trị nguyên của x để phân thức 3x^3-4x^2+x-1/x-4 sau có giá trị là 1 số nguyên
=[3x(x2-16)+44(x2-16)+44.16+x-4+3]/(x-4)
=3x(x+4)+44(x+4)+1+(44.16+3)/(x-4)
để là giá trị nguyên thì 44.16+3=707 chia hết cho x-4
vậy x-4 phải là ước của 707
707=7.101 => x-4=7 hoặc x-4=101
=>x =11 hoăc x=105
Cho biểu thức: \(M=\left(\frac{1}{x+2}+\frac{8}{8-4x}+\frac{x^2}{x^3-4x}\right):\frac{6}{x+2}\)
a) Rút gọn M
b) Tìm giá trị nguyên của x để M có giá trị nguyên
cho biểu thức: A= 2x^2-4x+2 / x^3-x^2-(x-1)
a) Rút gọn A
b) tính giá trị cảu A khi x=5
c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)
\(\Leftrightarrow8x-2+3⋮4x-1\)
mà \(8x-2⋮4x-1\)
nên \(3⋮4x-1\)
\(\Leftrightarrow4x-1\inƯ\left(3\right)\)
\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Vậy: \(x\in\left\{0;1\right\}\)
a=x+5/x+1 b=2x+4/x+3 c=3x+8/x-1 d=2x-3/x-1 e=5x+9/x+5 g=4x+9/2x+1 h=6x+5/2x-1 i=4x-6/2x+1 k=4x+4/2x+4 n=4x+6/2x+2