cho x,y>0 thỏa mãn \(xy+4\le2y\)
tìm GTNN của \(A=\frac{x^2+2y^2}{xy}\)
Cho x,y >0 và xy+4\(\le2y\). Tìm GTNN của
A = \(\frac{x^2+2y^2}{xy}\)
Em thử nha, sai thì thôi, mới học dạng này thôi ạ.
Ta có \(A=\frac{x^2+2y^2}{xy}=\frac{\left(\frac{x}{y}\right)^2+2}{\left(\frac{x}{y}\right)}\) (chia cả tử và mẫu cho y2)
Đặt \(\frac{x}{y}=t>0\)(*) thì \(x=ty\).
\(gt\Leftrightarrow ty^2+4\le2y\Leftrightarrow ty^2-2y+4\le0\) (1)
Ta sẽ chứng minh \(t\le\frac{1}{4}\) (**). Thật vậy, giả sử \(t>\frac{1}{4}\) khi đó:
\(ty^2-2y+4>\frac{1}{4}y^2-2y+4=\frac{1}{4}\left(y-4\right)^2\ge0\) tức là \(ty^2-2y+4>0\)(trái với (1), tức là trái với giả thiết, vô lí)
Do đó (**) đúng. Từ (*) và (**) ta có \(0< t\le\frac{1}{4}\).
Mặt khác \(A=\frac{x^2+2y^2}{xy}=\frac{\left(\frac{x}{y}\right)^2+2}{\left(\frac{x}{y}\right)}\)
\(=\frac{t^2+2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\)
\(\ge16-31.\frac{1}{4}=\frac{33}{4}\)
Đẳng thức xảy ra khi \(t=\frac{1}{4}\) tức là \(x=\frac{y}{4}\)
\(0\ge\frac{y^2}{4}-2y+4\). Dễ thấy \(VP=\frac{1}{4}\left(y-4\right)^2\ge0\) do đó VT = VP = 0 <=> y = 4 suy ra x = 1
Vậy..
Cho \(x,y\ge0\)0 thoả mãn \(xy+4\le2y\). Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{x^2+2y^2}{xy}\)
theo de bai =>\(2y>=2\sqrt{xy.4}\)(co si)
=>\(\frac{\sqrt{y}}{\sqrt{x}}>=2\)=>\(\frac{y}{x}>=4\)
ta co \(A=\frac{x}{y}+\frac{2y}{x}\)đặt \(\frac{y}{x}=a\)
=>\(A=\frac{1}{a}+2a=\frac{1}{a}+\frac{a}{16}+\frac{31}{16}a>=\frac{1}{2}+\frac{31}{4}=\frac{66}{8}=\frac{33}{4}\)
<=>y=4x
cho x,y>0 thỏa mãn x\(\ge\)2y. Tìm GTNN A=\(\frac{x^2+y^2}{xy}\)
\(A=\frac{x^2+4y^2-3y^2}{xy}\ge\frac{2\sqrt{x^2.4y^2}}{xy}-\frac{3y}{x}\)
do x lớn hơn bằng 2y nên \(-\frac{3y}{x}\ge-\frac{3}{2}\)
Dấu = xảy ra khi và chỉ khi x=2y
cho x,y thỏa mãn 1≤y≤2 và xy+2≥2y. tìm GTNN của \(M=\dfrac{x^2+4}{y^2+1}\)
\(xy\ge2\left(y-1\right)\ge0\Rightarrow x\ge\dfrac{2\left(y-1\right)}{y}\ge0\)
\(\Rightarrow M\ge\dfrac{\dfrac{4\left(y-1\right)^2}{y^2}+4}{y^2+1}=4.\dfrac{\left(y-1\right)^2+y^2}{y^2\left(y^2+1\right)}\)
\(\dfrac{M}{4}\ge\dfrac{2y^2-2y+1}{y^4+y^2}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{\left(2-y\right)\left(y^3+2y^2-3y+2\right)}{4\left(y^4+y^2\right)}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow M\ge1\)
Dấu "=" xảy ra khi \(y=2;x=1\)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2
\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)( \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))
=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0
Cho x>0, y>0 thỏa mãn xy=6. Tìm GTNN của biểu thức Q= 2/x +3/y + 6/3x+2y
cho x , y >0 thỏa mãn x > 2y
tìm GTNN của \(\frac{x^2+y^2}{xy}\)
cho x,y>0;thỏa mãn x+y=1. Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
1. Cho x,y thỏa mãn 0 < x <= 2, 4 <= y < 5 và x + y = 6
Tìm GTNN: P = 1/x + 1/y
2. Cho x > 2y, xy = 1
Tìm GTNN: P = (x^2 + 4y^2)/(x-2y)
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé