Cho \(x,y\ge0\)0 thoả mãn \(xy+4\le2y\). Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{x^2+2y^2}{xy}\)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
Cho x>0, y>0 thỏa mãn xy=6. Tìm GTNN của biểu thức Q= 2/x +3/y + 6/3x+2y
cho x , y >0 thỏa mãn x > 2y
tìm GTNN của \(\frac{x^2+y^2}{xy}\)
cho x,y>0;thỏa mãn x+y=1. Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Cho x,y>0 thỏa mãn x+y=1 tìm GTNN của A=xy+\(\frac{1}{xy}\)
cho x,y >0 thỏa mãn x+y=1. Tìm GTNN của:
\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)
Với x,y là các số thực thỏa mãn 1≤y≤2; xy+2≥2y
Tìm GTNN của biểu thức M=\(\frac{x^2+4}{y^2+1}\)
Cho x, y >0 thỏa mãn \(x^2+y^2\le1\). Tìm GTNN của \(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)