Chứng tỏ : (2454 x 5424 x 210) chia hết cho 7263
1. Chứng minh
a, 810 - 89 - 88 chia hết cho 55
b, 2454 . 5424 . 210 chia hết cho 7263
c, (210 + 211 + 212) : 7 là 1 số tự nhiên
Chứng minh rằng :
d. 24^54 . 54^24. 2^10 chia hết cho 7263
\(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)
\(=2^{196}\cdot3^{126}\)
Chứng minh rằng :
c. 81^7 - 27^9 - 9^13 chia hết cho 45
d. 24^54 . 54^24. 2^10 chia hết cho 7263
c: \(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{24}\cdot45⋮45\)
Bài 1. Chứng tỏ 2022 . 15 + 25 chia hết cho 5
Bài 2: Chứng tỏ 1998 . 30 + 19 không chia hết cho 6
Bài 3. Cho x thuộc tập hợp {25; 49; 56; 100} và x - 35 không chia hết cho 7. Tìm x.
Bài 4. Số tự nhiên b chia cho 40 dư 8. Hỏi b có chia hết cho 4 không? có chia hết cho 5 không? Vì sao?
(giúp mình nha mình đang cần gấp )
Tải file lênBài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
1/ Cho:x + 4y chia hết cho 7 (x,y thuộc N).
Chứng tỏ: 3x + 9y chia hết cho 7
2/ Cho 9x + 5y chia hết cho 17 (x,y thuộc N).
Chứng tỏ rằng : 2x + 3y chia hết cho 17
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
biết x-y chia hết cho 6 chứng tỏ x+5y cũng chia hết cho 6
Ta có:
\(\left\{{}\begin{matrix}\left(x-y\right)⋮6\left(gt\right)\\6y⋮6\end{matrix}\right.\)
\(\Rightarrow\left(x-y+6y\right)⋮6\Leftrightarrow\left(x+5y\right)⋮6\left(đpcm\right)\)
Ta có: (x-y) chia hết cho 6
-> 6y chia hết cho 6
Suy ra:(x-y+6y) chia hết cho 6
Suy ra:(x+5y) chia hết cho 6
Biết x - y chia hết cho 6.Chứng tỏ x + 5y cũng chia hết cho 6
Chứng tỏ rằng : 2x+3y chia hết cho 7 thì 9x+5y chia hết cho 7 và ngược lại
Chứng tỏ rằng : x+5y chia hết cho 7 thì 10x +y chia hết cho 7 và ngược lại
Ta có: x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+49x+5y chia hết cho 7
=>50x+5y chia hết cho 7
=>5.(10x+y) chia hết cho 7
Mà (5,7)=1
=>10x+y chia hết cho 7
=>ĐPCM
Ngược lại: 10x+y chia hết cho 7
=>5.(10x+y) chia hết cho 7
=>50x+5y chia hết cho 7
=>x+49x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+5y chia hết cho 7
=>ĐPCM
Cho biểu thức A = 2 + 2^2 + 2^3 + ... + 210. Không tính giá trị của biểu thức, hãy chứng tỏ A chia hết cho 3.
Ta có: \(A=2+2^2+2^3+...+2^{10}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^9+2^{10}\right)\)
\(\Leftrightarrow A=6+2^2\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)
\(\Leftrightarrow A=6+2^2.6+...+2^8.6\)
\(\Leftrightarrow A=6\left(1+2^2+...+2^8\right)\)
Vì \(6⋮3\)
\(\Rightarrow A=6\left(1+2^2+..+2^8\right)⋮3\)
Vậy \(A⋮3\)
hok tốt !!!
\(A=2+2^2+2^3+...+2^{10}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)
\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^9\cdot3\)
\(\Leftrightarrow A=3\left(2+2^3+....+2^9\right)\)
=> A chia hết cho 3
Cho x, y thuộc N và x + y chia hết cho 2
chứng tỏ x - y chia hết cho 2
Th1 x,y le => hieu la so chan
Th2 x,y chan => hieu la so chan