Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu an Phạm
Xem chi tiết
Hiếu
17 tháng 4 2018 lúc 22:09

Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)

nên pt luôn có 2 nghiệm phân biệt là x1 và x2 

Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)

=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)

<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)

<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)

<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)

<=> \(2m\left(6m+2\right)-18< 0\)

Bn tự giải tiếp nha :D

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 2 2022 lúc 0:14

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

Lộc Nguyễn Phúc
Xem chi tiết
Nguyễn Hồng Dương
Xem chi tiết
ngocha_pham
Xem chi tiết
Nguyễn Thúy Ngọc
22 tháng 5 2021 lúc 7:12

B1 : giải PT (m tham số ) bằng cách tính denta  > 0

B2 : áp dụng hệ thức VI-ÉT    .. X1  + X2 = -b/a

                                                .. X1X2 = c/a

B3: thay x1 + x2 = -b/a vào pt (2) 

      thay x1x2 = c/a vào pt (2)

Khách vãng lai đã xóa
Hiếu Cao Huy
Xem chi tiết
kênh youtube: chaau high...
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 19:40

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

Ngọc Mai
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 8 2021 lúc 10:24

Để phương trình có 2 nghiệm x1,x2

\(\Leftrightarrow\Delta=\left(m-2\right)^2-4\cdot\left(-2m\right)\ge0\)

\(\Leftrightarrow m^2-4m+4+8m\ge0\)

\(\Leftrightarrow\left(m+2\right)^2\ge0\) (luôn đúng)

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

Kết hợp định lí Vi-ét và đề bài ta có điều kiện:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2\left(m-2-x_2\right)+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2m-4-2x_2+3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=4-2m\end{matrix}\right.\)

Cũng theo Vi-ét:

\(x_1x_2=-2m\) \(\Rightarrow\left(3m-6\right)\left(4-2m\right)=-2m\)

\(\Rightarrow-6m^2+26m-24=0\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(m\in\left\{3;\dfrac{4}{3}\right\}\) thỏa mãn đề

Tick nha 😘

Nguyễn Việt Lâm
3 tháng 8 2021 lúc 10:16

\(\Delta=\left(m-2\right)^2+8m=\left(m+2\right)^2\ge0;\forall m\Rightarrow\) phương trình đã cho luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

Kết hợp hệ thức Viet và điều kiện đề bài ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m-4\\2x_1+3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=-2m+4\end{matrix}\right.\)

Thế vào \(x_1x_2=-2m\)

\(\Rightarrow\left(3m-6\right)\left(-2m+4\right)=-2m\)

\(\Leftrightarrow-6m^2+26m-24=0\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 18:30

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4