Cho phương trình: \(2x^2-4mx+2m^2-1=0\)
Tìm m để \(2x_1+4mx_2+2m^2-9< 0\)
cho phương trình \(2x^2-4mx+2m-1=0\)
tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(2x_1^2+4mx_2+2m^2-9< 0\)
Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)
nên pt luôn có 2 nghiệm phân biệt là x1 và x2
Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)
=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)
<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)
<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)
<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)
<=> \(2m\left(6m+2\right)-18< 0\)
Bn tự giải tiếp nha :D
Cho PT \(2x^2-4mx+2m^2-1=0\). Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ phân biệt thỏa:
\(\left(2x_1^{2016}-4mx_1^{2015}+\left(2m^2-1\right)x_1^{2014}+1\right)\left(2x_2^2+4mx_1+2m^2-9\right)< 0\)
\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên:
\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)
Do \(x_2\) là nghiệm nên:
\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)
Bài toán trở thành:
\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)
\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)
\(\Leftrightarrow2m^2-2< 0\)
\(\Leftrightarrow-1< m< 1\)
cho phương trình: \(2x^2-4mx+2m^2-1=0\). Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn: \(2x^2-4mx+2m^2-1>0\).
Cho phương trình 2x^2 - 4mx + 2m^2 -1 =0
a) Chứng minh phương trình luôn có 2 nghiệm với mọi m
b) Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn:
2x1^2 + 4mx - 2m^2 + 1 > 0
Giúp mình câu b với
Cho phương trình 2x2 - 4mx + 2m2 -1 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn 2x12 + 4mx2 +2m2 -1 > 0
B1 : giải PT (m tham số ) bằng cách tính denta > 0
B2 : áp dụng hệ thức VI-ÉT .. X1 + X2 = -b/a
.. X1X2 = c/a
B3: thay x1 + x2 = -b/a vào pt (2)
thay x1x2 = c/a vào pt (2)
pt: \(2x^2-4mx+2m^2-1=0\)
tìm m đểpt có 2 no phân biệt x1, x2thỏa: \(2x^2_1+4mx_2+2m^2-1>0\)
cho pt x^2-(2m+1)x+m^2-m=0 tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn \(\sqrt{2x_1}\)+1=\(x_2\)
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3
Cho phương trình\(x^2-\left(m-2\right)x-2m=0\) (với ẩn là x)
Tìm điều kiện m để phương trình có hai nghiệm \(x_1\),\(x_2\) thỏa mãn \(2x_1+3x_2=0\)
Để phương trình có 2 nghiệm x1,x2
\(\Leftrightarrow\Delta=\left(m-2\right)^2-4\cdot\left(-2m\right)\ge0\)
\(\Leftrightarrow m^2-4m+4+8m\ge0\)
\(\Leftrightarrow\left(m+2\right)^2\ge0\) (luôn đúng)
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp định lí Vi-ét và đề bài ta có điều kiện:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2\left(m-2-x_2\right)+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2m-4-2x_2+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=4-2m\end{matrix}\right.\)
Cũng theo Vi-ét:
\(x_1x_2=-2m\) \(\Rightarrow\left(3m-6\right)\left(4-2m\right)=-2m\)
\(\Rightarrow-6m^2+26m-24=0\)
\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(m\in\left\{3;\dfrac{4}{3}\right\}\) thỏa mãn đề
Tick nha 😘
\(\Delta=\left(m-2\right)^2+8m=\left(m+2\right)^2\ge0;\forall m\Rightarrow\) phương trình đã cho luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
Kết hợp hệ thức Viet và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m-4\\2x_1+3x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=-2m+4\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m\)
\(\Rightarrow\left(3m-6\right)\left(-2m+4\right)=-2m\)
\(\Leftrightarrow-6m^2+26m-24=0\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)
Tìm m để các phương trình sau (dùng công thức nghiệm thu gọn)
a.\(x^2+2\left(m-2\right)x+m^2-3=0\) có nghiệm
b.\(\left(2m-1\right)x-4mx+2m+3=0\) có nghiệm kép
c.\(4x^2-2\left(2m-1\right)x+m^2=0\) vô nghiệm
a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)
\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)
=>-16m>=-28
hay m<=7/4
b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)
=>4m-3=0
hay m=3/4
c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)
=>-16m+4<0
hay m>1/4