giải pt: (3x-2)(x+1)2(3x+8) = -16
Giải pt (3x-2)(x+1)^2(3x+8)=-16
`1.` giải pt :
`a)|-7x|=3x+16`
`b)(x-1)/(x+2)-x/(x-2)=(5x-8)/(x^2-4)`
`2.` giải bất phương trình sau và biểu diễn nghiệm trên trục số
`7x+5<3x-11`
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
giải pt 2x-13 /2x-16 + 2x-12/x-8 = 7/8 + 2(5x-39)/3x-24
Giải pt
a)1/x-1-3x²/x³-1=2x/x²+x+1
b) 4x+5/x-1+2x-1/x+1=6
c) x+2/x-3+x-2/x+3=2(x²+6) /x²-9
d) 1/x-2+3=3x-2/x+2
e) 148-x/25+169-x/23+186-x/21+199-x/19=10
f) x+16/49+x+18/47=x+20/45-1
g) (x+2) (x+4) (x+6) (x+8) =-16
h) x³+3x²+3x+2=0
i) 4x/x²-5x+6+3x/x²-7x+6=0
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
\(h,\)\(x^3+3x^2+3x+2=0\)
\(\Rightarrow x^3+2x^2+x^2+2x+x+2=0\)
\(\Rightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
giải pt
\(\sqrt{x^2+16}\)- \(\sqrt{x^2+7}\)= 3x-8
giải pt
x^2+4x-3|x+2|+4=0
4x^2+1/x^2+|2x-1/x|-6=0
2x/(3x^2-5x+2)+13x/(3x2+x+2)=6
2(x+1)/3x^2+x+13(x+1)/3x^2+7x+16=6
1: =>(x+2)^2-3|x+2|=0
=>|x+2|(|x+2|-3)=0
=>x+2=0 hoặc x+2=3 hoặc x+2=-3
=>x=-2; x=1; x=-5
giải phương trình (3x-2)((x+1)^2)(3x+8)= -16
=>(9x^2+24x-6x-16)(x^2+2x+1)=-16
=>(9x^2+18x-16)(x^2+2x+1)=-16
=>(9x^2+18x+9-25)(x^2+2x+1)=-16
=>[9(x+1)^2-25](x+1)^2=-16
=>9(x+1)^4-25(x+1)^2+16=0
Đặt (x+1)^2=a
=>9a^2-25a+16=0
=>a=1 hoặc a=16/9
=>(x+1)^2=1 hoặc (x+1)^2=16/9
=>\(x\in\left\{0;-2;\dfrac{1}{3};-\dfrac{7}{3}\right\}\)
Giải pt sau:
a) 1/x-1 - 3x^2/x^3-1 = 3x/x^2+1+1
b) 1 + 1/x+2 = 12/8-x^3
c) 2x/x+2 - x/x-2 = -4x/x^2-4
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như thế này gây khó đọc.
GIẢI PT
a) 4x-8/ 2x^2 +1=0
b) x^2 -x-6 / x-3=0
c) x+5 /3x-6 - 1/2 =2x-3 /2x -4
d) 12 / 1-9x^2 = 1-3x / 1+3x - 1+3x / 1-3x
<=>4x-8=0
<=>4x=8
=.x=2(nhan)