Tìm số dư của phép chia (x+3)(x+5)(x+7)(x+9) + 2033 cho x2 +12x + 30
Tìm số dư trong phép chia (x+3)(x+5)(x+7)(x+9)+2033 cho \(x^2+12x+30\)
Ta có :
(x + 3 ) (x+5)(x+7)(x+9) + 2033
= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033
đặt x2 + 12x + 30 = a
Khi đó : (a - 3 ) ( a + 5 ) + 2033
= a2 + 2a - 15 + 2033
= a2 + 2a + 2018
Vậy số dư là 2018
Tìm số dư trong phép chia (x+3)(x+5)(x+7)(x+9)+2033 cho x^2+12x+30
chả khác j câu này : https://hoc24.vn/hoi-dap/question/228443.html
Cho đa thức Q=(x+3)(x+5)(x+7)(x+9)+2014. Tìm số dư trong phép chia đa thức Q cho đa thức x2+12x+32.
Tìm số dư trong phép chia của biểu thức:
( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 2004 cho x2 + 8x + 1.
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Cho 2 đa thức
A=98x+13x2+6x5-x6-26-12x^4
B=1-x-x3
a) tìm thương và dư của phép chia A cho B
b) C/m nếu x là số nguyên thì thương của phép chia là số chia hết cho 6
c) Tìm các giá trị nguyên của x để dư của phép chia bằng 0( chia hết ý)
a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)
\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)
\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)
b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6
b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0
=>m=-5 hoặc m=4/17
khi chia đa thức f(x) cho x + 3 thf dư (- 15 ), chia cho x - 5 thì dư 9 . tìm phần dư của phép chia đa thức f(x) cho ( x + 3)( x - 5)
tìm số dư trong phép chia đa thức
(x+1)(x+3)(x+5)(x+7)+9 cho x2+8x+12
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)